Accepted Manuscript

Spray deposition of V_4O_9 and V_2O_5 thin films and post-annealing formation of thermochromic VO_2

M. Benkahoul, M.K. Zayed, A. Solieman, S.N. Alamri

PII: S0925-8388(17)30526-1

DOI: 10.1016/j.jallcom.2017.02.088

Reference: JALCOM 40816

To appear in: Journal of Alloys and Compounds

Received Date: 9 November 2016

Revised Date: 1 January 2017

Accepted Date: 10 February 2017

Please cite this article as: M. Benkahoul, M.K. Zayed, A. Solieman, S.N. Alamri, Spray deposition of V_4O_9 and V_2O_5 thin films and post-annealing formation of thermochromic VO_2 , *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.02.088.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Spray deposition of V_4O_9 and V_2O_5 thin films and post-annealing formation of thermochromic VO_2

M. Benkahoul*^{,1}, M.K. Zayed^{1,2}, A. Solieman^{1,3}, S.N. Alamri¹

¹Physics Department, Faculty of Science, Taibah University, PO Box 344, Madina, Saudi Arabia
²Physics Department, Faculty of Science, Beni-Suief University, Bani-Suief 6111, Egypt
³Physics Department, Faculty of Science, Al-Azhar University, Assiut, Egypt

^{*}Corresponding author:

Email: mbenkahoul@taibahu.edu.sa Tel: +966569033310

Abstract

Vanadium oxide (VO_x) thin films were deposited at various substrate temperatures (T_s) by spray pyrolysis technique using 0.05 M vanadyl acetylacetonate precursor. V₄O₉ films are formed at $T_s = 300^{\circ}$ C, while mixed V₂O₅ phases are formed at higher T_s (400 and 500°C). Annealing in forming gas of V₄O₉ films shows the formation of higher content of thermochromic VO₂ phase than V₂O₅ films. V₄O₉ films show little higher electric resistivity (ρ), higher temperature coefficient of resistance (*TCR*), and higher thermal carrier activation energy (E_a) than V₂O₅ films. Annealed VO_x films show a 2-3 order of magnitude change in ρ , optical transmission switch of 19-39%, and higher E_a than to the as deposited films. Annealed films deposited at T_s =500°C presents a high *TCR* of -4.6% K⁻¹. Optical absorption, electronic transitions, and energy gaps of the formed VO_x phases have been discussed in relation to its electronic band structure.

Keywords: Vanadium oxide, V_4O_9 , V_2O_5 , spray pyrolysis, thermochromic, annealing, thin films, electric and optical properties

Download English Version:

https://daneshyari.com/en/article/5460051

Download Persian Version:

https://daneshyari.com/article/5460051

Daneshyari.com