ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Visible-light-driven Ag₂MoO₄/Ag₃PO₄ composites with enhanced photocatalytic activity

Wenrong Cao, Yanting An, Lifang Chen*, Zhiwen Qi

State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

ARTICLE INFO

Article history:
Received 7 September 2016
Received in revised form
16 December 2016
Accepted 31 December 2016
Available online 4 January 2017

Keywords: Ag₂MoO₄ Ag₃PO₄ Visible light Degradation Photocatalysis

ABSTRACT

Novel Ag₂MoO₄/Ag₃PO₄ (AgMoP) composites were synthesized by a facile precipitation method. The composition, structures and optical properties of as-prepared catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV—vis diffused reflectance spectra (UV—vis DRS). The photocatalytic activities were evaluated by the degradation of rhodamine B (RhB), methylene blue (MB) and methyl orange (MO) under visible light irradiation ($\lambda \geq 420$ nm). 5% AgMoP composite showed the best photocatalytic performance, and its degradation rate constants were 2.8, 2.4, 4.6 times higher than pure Ag₃PO₄ for the degradation of RhB, MB, MO, respectively. Particularly, its photocatalytic property can be maintained even after four degradation cycles. Additionally, based on UV—vis DRS and active species trapping, the photocatalytic mechanism for the enhanced photocatalytic performance of Ag₂MoO₄/Ag₃PO₄ was proposed.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Semiconductor photocatalysis technology can serve as a promising, cost-effective and environmentally friendly approach to cope with the environment pollution and energy crises [1–4]. In order to achieve the prospective application of photocatalysis, it is imperative to design and prepare efficient visible-light-driven photocatalysts. In general, there are three basic principles for the development of high-efficient photocatalysts: (i) the high utilization of visible light; (ii) efficient separation and migration of electron-hole pairs; (iii) suitable redox potential to trigger the photocatalytic reaction [5–8]. On the basis of these principles, the fabrication of novel photocatalysts with high visible-light activity has been intensively developed in recent years.

To date, Ag-based photocatalysts, such as AgX (X = Cl, Br, I), Ag₂S, Ag₂O, Ag₂CO₃ and Ag₃PO₄, have been extensively studied due to their excellent photocatalytic properties under visible light illumination [9]. Among these photocatalysts, Ag₃PO₄ has been reported as a promising photocatalyst for photooxidation of water and decomposition of organic pollutants due to its excellent photooxidative capabilities with quantum efficiency up to 90% at wavelengths longer than 420 nm [10,11]. According to first-

principles calculations, the superior photocatalytic performance of Ag₃PO₄ can be ascribed to the highly dispersive conduction band and PO₄³ electrostatic induction, which facilitates the separation of photogenerated electrons and holes [12]. Although pure Ag₃PO₄ displays highly efficient photocatalytic performance, the inevitable photodecomposition and inferior structural stability restrain the practical application of Ag₃PO₄. Thus, many attempts have been made to solve these problems, including morphological modulation, ion doping and heterojunction fabrication [13–15]. Among them, the semiconductor heterojunction structure is regarded as a direct and simple strategy to design the efficient and stable Ag₃PO₄based photocatalysts. Generally, the heterojunction systems composed of different semiconductors with suitable band structures are in favor of achieving the efficient separation of photogenerated electron-hole pairs, and thus indeed benefit the photocatalytic activity and stability [15,16]. Accordingly, various composite photocatalysts have been developed to overcome the shortcomings of Ag₃PO₄, such as AgX/Ag₃PO₄ (X = Cl, Br, I), Co₃O₄/ Ag₃PO₄, MoS₂/Ag₃PO₄, Ag₃PO₄/grapheme, Ag₃PO₄@mpg-C₃N₄ and so on [17-21].

Silver molybdate (Ag₂MoO₄) is another important semiconductor with controllable morphology structures, including nanoparticles, cube-like, flower-like, and wire-like nanostructures [22–25]. At present, it has attracted intensive attentions in the field of gas-sensing and photoswitch devices, photoluminescence, antibacterial materials due to the easily controllable morphology

Corresponding author.

E-mail address: lchen@ecust.edu.cn (L. Chen).

[25-27]. However, it is worth noting that pure Ag₂MoO₄ semiconductor suffers from the low utilization of visible light because of its wide band gap energy, which restricts its application in photocatalysis [28]. Recently, some efforts have been devoted to design Ag₂MoO₄-based composites to improve the photocatalytic performance of Ag₂MoO₄ under visible light illumination. For example, Bai et al. [29] synthesized Ag@Ag₂MoO₄-AgBr composite through in-situ anion-exchange method. Compared with pure AgBr and Ag₂MoO₄, the composite exhibited high photocatalytic activity and stability in the degradation of various organic dyes under visible light irradiation. Li et al. [23] prepared the cube-like Ag-Ag₂MoO₄ composite by a microwave-assisted hydrothermal process. The catalyst showed good visible-light-responsive photocatalytic activity since the localized surface plasmon resonance of Ag⁰ particles can promote the absorption of visible light. Based on the analyses, coupling Ag₂MoO₄ with Ag₃PO₄ could be an enormous potential to enhance the photocatalytic activity and stability of individual component. To the best of our knowledge, Ag₂MoO₄/Ag₃PO₄ composite has not been reported previously.

In the present work, we developed a novel Ag₂MoO₄/Ag₃PO₄ composite photocatalyst by a facile precipitation method. The structures, morphologies and optical properties have been discussed in detail. Three different kinds of organic dyes, rhodamine B (RhB), methylene blue (MB) and methyl orange (MO) were chosen as model pollutants to evaluate the photocatalytic performance of as-prepared catalysts under visible light irradiation. The experimental results indicated that the Ag₂MoO₄/Ag₃PO₄ composite exhibited much higher photocatalytic activity and stability than pure Ag₃PO₄. In addition, the possible photodegradation mechanism of Ag₂MoO₄/Ag₃PO₄ was also discussed.

2. Experimental

2.1. Catalyst preparation

All reagents were of analytical grade and used without further purification. Ag_2MoO_4 was prepared by a simple precipitation method. Na_2MoO_4 solution (0.025 M, 40 mL) was added drop by drop into $AgNO_3$ solution (0.05 M, 40 mL) with constant stirring. After stirring for 4 h in the dark, the obtained white precipitate of Ag_2MoO_4 was separated by centrifugation, washed with deionized water and ethanol for several times, then dried at 60 °C for 6 h.

The preparation of Ag₂MoO₄/Ag₃PO₄ composite was also carried out through a facile precipitation process. In a typical procedure, 2 mmol AgNO₃ was dissolved in 40 mL of distilled water with constant stirring. A certain amount of Na₂MoO₄·2H₂O was first added into the above solution to generate a certain white precipitate. Then, 40 mL of Na₂HPO₄ solution (0.0167 M) was added drop by drop into the above suspension. After continually stirring for 4 h in the dark, the obtained yellow precipitate of Ag₂MoO₄/Ag₃PO₄ (AgMoP) was separated by centrifugation, washed with deionized water and ethanol for several times, then dried at 60 °C for 6 h. To investigate the effect of Ag₂MoO₄ contents, three AgMoP samples were prepared by adjusting the added amount of Na₂MoO₄·2H₂O. The actual weight percentages of Ag₂MoO₄ in Ag₃PO₄ were 2.1 wt%, 5.4 wt% and 7.8 wt%, respectively, according to the analyses of inductively coupled plasma-atomic emission spectroscopy (ICP-AES). For convenience, the different Ag₂MoO₄/Ag₃PO₄ composites were denoted as 2, 5, 8% AgMoP. In addition, pure Ag₃PO₄ was prepared by similar procedure without the addition of $Na_2MoO_4 \cdot 2H_2O$.

2.2. Characterization

The as-prepared samples were characterized by a X-ray

diffraction (XRD: Bruker D8 Advance diffractometer) with Cu-Ka radiation ($K\alpha_1 = 1.5406 \text{ Å}, K\alpha_2 = 1.5444 \text{ Å}$) in the range of $2\theta = 10^{\circ} - 80^{\circ}$ at room temperature. X-ray photoelectron spectroscopy (XPS) analyses were obtained by a Thermo Scientific ESCALAB 250Xi X-ray photoelectron spectrometer with Al Kα radiation. The actual contents of Ag₂MoO₄ in the AgMoP composites were determined by ICP-AES on an Agilent 725ES instrument. The surface morphologies of photocatalysts were observed by a fieldemission scanning electron microscopy (FE-FEM, NanoSEM 450) equipped with an energy X-ray dispersive spectrometer (EDS). The Brunauer-Emmett-Teller (BET) specific surface areas of the prepared samples were analyzed by nitrogen adsorption/desorption isotherms at liquid nitrogen temperature with Micromeritics ASAP 2010 instrument. UV-Vis diffuse reflectance spectra (DRS) were performed on a Shimadzu UV-2450 spectrophotometer in a wavelength range of 200–800 nm, using BaSO₄ as a reference.

2.3. Photocatalytic activity test

The photocatalytic activities of as-prepared photocatalysts were tested by the degradation of RhB, MB and MO solutions under visible light irradiation ($\lambda \geq 420$ nm). A 350 W xenon lamp with a 420 nm ultraviolet filter was used as the visible light source. In a typical experiment, 50 mg of photocatalyst was added into 100 mL of 10 mg/L dye aqueous solution and then ultrasonicated for 10 min. The suspension liquid was magnetically stirred in dark for 30 min to establish the adsorption-desorption equilibrium between the photocatalyst and dye molecules prior to light irradiation. During illumination, 4.0 mL of suspension was collected at the regular intervals and centrifuged to remove the catalyst. The residual concentration of dye solutions was analyzed via a PerkinElmer Lamda 35 UV—Vis spectrophotometer.

3. Results and discussion

3.1. Catalyst characterization

The crystal structures of as-prepared catalysts were investigated by XRD analyses, as shown in Fig. 1. The sharp and strong diffraction peaks of pure Ag₃PO₄ (Fig. 1a) can be readily indexed to the bodycentered cubic structure of Ag₃PO₄ (JCPDS No. 06-0505) with high crystallinity. For pure Ag₂MoO₄ (Fig. 1e), the diffraction patterns can be assigned to the cubic phase of Ag₂MoO₄ crystal (JCPDS No. 08-

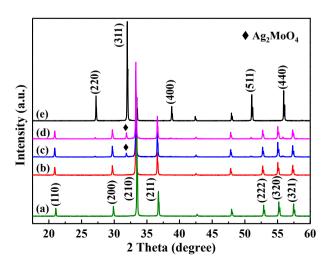


Fig. 1. XRD patterns of (a) pure Ag_3PO_4 , (b) 2% AgMoP, (c) 5% AgMoP, (d) 8% AgMoP, and (e) pure Ag_2MoO_4 catalysts.

Download English Version:

https://daneshyari.com/en/article/5460207

Download Persian Version:

https://daneshyari.com/article/5460207

<u>Daneshyari.com</u>