Accepted Manuscript

Temperature dependent magnetic properties of $Co_{1+x}T_xFe_{2-2x}O_4$ (T = Zr, Ti)

Vinitha Reddy Monaji, Srinivas Indla, Sudhindra Rayaprol, Shara Sowmya, A. Srinivas, Dibakar Das

PII: S0925-8388(17)30081-6

DOI: 10.1016/j.jallcom.2017.01.061

Reference: JALCOM 40428

To appear in: Journal of Alloys and Compounds

Received Date: 26 October 2016
Revised Date: 4 January 2017
Accepted Date: 6 January 2017

Please cite this article as: V.R. Monaji, S. Indla, S. Rayaprol, S. Sowmya, A. Srinivas, D. Das, Temperature dependent magnetic properties of $Co_{1+x}T_xFe_{2-2x}O_4$ (T = Zr, Ti), *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.01.061.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Temperature dependent magnetic properties of $Co_{1+x}T_xFe_{2-2x}O_4$ (T = Zr, Ti)

Vinitha Reddy Monaji^a, Srinivas Indla^a, Sudhindra Rayaprol^b, Shara Sowmya^c, A. Srinivas^c,

Dibakar Das^{a,*}

^aSchool of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046, India

^bUGC-DAE-Consortium for Scientific Research, Mumbai Centre, BARC Campus, Mumbai – 400085

^cDefence Metallurgical Research Laboratory, Advanced Magnetics Group, Hyderabad 500 058, India

* Corresponding author: Tel:- +91 4066794454

E-mail address: ddse@uohyd.ernet.in

Abstract

This study demonstrates the temperature dependent (carried out at 5, 150 and 300 K)

magnetic properties of Zr⁴⁺ and Ti⁺⁴ substituted cobalt ferrite samples and their comparison.

Polycrystalline $Co_{1+x}T_xFe_{2-2x}O_4$ (0 $\leq x \leq 0.4$ and T = Zr, Ti) series of compositions were

prepared by conventional ceramic method. X-ray diffraction (XRD) confirmed the single phase

cubic spinel structure, except for x = 0.4 composition. Coercivity (H_c) is observed to increase

substantially with decrease in temperature for all Zr and Ti substituted samples. The

magnetization and magnetocrystalline anisotropy constant (K_1) were observed to peak at ~150K

for both the series of samples. Field sensitivity of magnetization (dM/dH) increased with

progressive Zr and Ti substitutions. Curie temperature of Co_{1.2}Zr_{0.2}Fe_{1.6}O₄ and Co_{1.2}Ti_{0.2}Fe_{1.6}O₄

samples (~ 445°C and 472°C respectively) decreased compared to that of pure cobalt ferrite

(~517°C).

Key words: Oxide materials; Cobalt ferrite; Magnetic properties; Exchange interaction;

Magnetocrystalline anisotropy; Magnetization.

1

Download English Version:

https://daneshyari.com/en/article/5460366

Download Persian Version:

https://daneshyari.com/article/5460366

Daneshyari.com