Accepted Manuscript

Luminescent properties of R^+ doped $Sr_2MgSi_2O_7$: Eu^{2+} , Dy^{3+} ($R^+ = Li^+$, Ag^+) phosphors

Ling Xiao, Jian Zhou, Guizhen Liu, Lin Wang

PII: S0925-8388(17)31208-2

DOI: 10.1016/j.jallcom.2017.04.032

Reference: JALCOM 41433

To appear in: Journal of Alloys and Compounds

Received Date: 9 February 2017

Revised Date: 1 April 2017 Accepted Date: 3 April 2017

Please cite this article as: L. Xiao, J. Zhou, G. Liu, L. Wang, Luminescent properties of R^+ doped $Sr_2MgSi_2O_7$: Eu^{2+} , Dy^{3+} (R^+ = Li^+ , Ag^+) phosphors, *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.04.032.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Luminescent properties of R⁺ doped Sr₂MgSi₂O₇:

$$Eu^{2+}$$
, Dy^{3+} ($R^+ = Li^+$, Ag^+) phosphors

Ling Xiao ^a, Jian Zhou ^a, *, Guizhen Liu ^a, Lin Wang^b

a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China

b Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070, P. R. China

* Author for correspondence, E-mail addresses: jianzhou@whut.edu.cn, Contact

Number: +86-27-87884448

Abstract: Long afterglow phosphor $Sr_2MgSi_2O_7$: Eu^{2+} , Dy^{3+} doped with $R^+(R^+=Li^+, D_1)$ Ag⁺, respectively) was synthesized by the high temperature solid-state reaction method. Crystal structure, morphological and luminescent properties were analyzed diffraction (XRD), scanning electron microscope by (SEM), photoluminescence (PL), decay curves and thermoluminescence (TL) curves. The results indicate that the incorporation of these metal ions have no influence on the position of the emission peak which is determined by the $4f^7 \rightarrow 4f^65d^1$ Eu²⁺ ions, but have influence on the intensity of the emission and the afterglow. The highest phosphorescent intensity was observed with 2.5 mol% of Li⁺, and 0.4 mol% of Ag⁺ doping in respectively. Compared with the undoped sample, the optimum incorporation of Li⁺ ions could induce a remarkable increase of phosphorescent intensity and the decay constant by about 1.5 times and 1.6 times, respectively. Doping Ag⁺ ions can also improve the luminescence properties, but the performance is not good as Li⁺ ions. The mechanism of Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺, R⁺ (R⁺ = Li⁺, Ag⁺, respectively) enhancement has been discussed.

Keywords: Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺; lithium ion; silver ion; luminescent properties

Download English Version:

https://daneshyari.com/en/article/5460400

Download Persian Version:

https://daneshyari.com/article/5460400

Daneshyari.com