Accepted Manuscript

Hot deformation mechanisms and microstructure evolution of SiCp/2014Al composite

Zhiye Huang, Xingxing Zhang, Bolyu Xiao, Zongyi Ma

PII: S0925-8388(17)32052-2

DOI: 10.1016/j.jallcom.2017.06.065

Reference: JALCOM 42133

To appear in: Journal of Alloys and Compounds

Received Date: 22 March 2017
Revised Date: 20 May 2017
Accepted Date: 5 June 2017

Please cite this article as: Z. Huang, X. Zhang, B. Xiao, Z. Ma, Hot deformation mechanisms and microstructure evolution of SiCp/2014Al composite, *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.06.065.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Hot deformation mechanisms and microstructure evolution of SiCp/2014Al composite

Zhiye Huang a,b, Xingxing Zhang a, Bolyu Xiao a,*, Zongyi Ma

^a Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China

^b School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230001, China

Abstract:

Hot deformation behavior of a stir cast and hot extruded 14 vol.% SiCp/2014Al composite was studied at temperatures from 355 to 495 °C and strain rates from 0.001 to 1 s⁻¹, including microstructure evolution and damage formation. Stress-strain rate fitting was optimized to construct accurate processing maps based on modified dynamic materials model (MDMM). In addition, the strain rate sensitivity maps were plotted, indicating more significant effect of temperature on deformation mechanism than strain rate. The dissipation efficiency versus temperature curves indicated: (i) a transition from dynamic recovery (DRV) to dynamic recrystallization (DRX) at 400 °C; (ii) occurrence of dynamic grain growth (DGG) at 400-440 °C; (iii) existence of equicohesive point (T_{eq}) of 450 °C (~0.8 T_{m}) above which grain boundaries weakened and contributed to plastic deformation. The particular fluctuation of temperature sensitivity at 440 °C was caused by an abnormal grain growth.

Keywords: Metal matrix composites; Hot deformation; Processing map; Dynamic recovery; Dynamic recrystallization

1

^{*}Corresponding author. Tel.: +86-24-83978630, Fax: +86-24-23971749, E-mail address:, blxiao@imr.ac.cn (B.L. Xiao).

Download English Version:

https://daneshyari.com/en/article/5460686

Download Persian Version:

https://daneshyari.com/article/5460686

<u>Daneshyari.com</u>