Accepted Manuscript

Structural and spectroscopic properties of MgAl₂O₄:Nd³⁺ transparent ceramics fabricated by using two-step Spark Plasma Sintering

R. Boulesteix, A. Maître, K. Lemański, P.J. Dereń

PII: S0925-8388(17)32089-3

DOI: 10.1016/j.jallcom.2017.06.101

Reference: JALCOM 42170

To appear in: Journal of Alloys and Compounds

Received Date: 22 March 2017
Revised Date: 6 June 2017
Accepted Date: 8 June 2017

Please cite this article as: R. Boulesteix, A. Maître, K. Lemański, P.J. Dereń, Structural and spectroscopic properties of MgAl₂O₄:Nd³⁺ transparent ceramics fabricated by using two-step Spark Plasma Sintering, *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.06.101.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Structural and spectroscopic properties of $MgAl_2O_4:Nd^{3+}$ transparent ceramics fabricated by using two-step Spark Plasma Sintering

R. Boulesteix^{1,2,*} A. Maître^{1,2}, K. Lemański³, P. J. Dereń³

¹ Univ. Limoges, SPCTS, UMR CNRS 7315, F-87068 Limoges, France

² LCTL, SPCTS, UMR CNRS 7315, F-87068 Limoges, France

³ ILT&SR, Polish Academy of Science, ul. Okólna 2, 50-422 Wrocław, Poland

(*) Author to whom the correspondence should be addressed

Tel.: +33 (0)5 87 50 23 45

Fax: +33 (0)5 87 50 23 04

E-mail: remy.boulesteix@unilim.fr

Abstract:

Neodymium-doped magnesium aluminate spinel Nd³⁺:MgAl₂O₄ transparent ceramics were successfully elaborated with significant Nd content (*i.e.* up to 0.2at.%) by using Spark Plasma Sintering (SPS). Microstructural, structural, and optical properties of the obtained samples were compared to those of undoped transparent spinel ceramics. The transparency is of about 70% in the visible region for undoped samples and of about 50% for neodymium-doped samples with a significant shift of the cut-off wavelength in UV region to higher values. Spectroscopic measurements have evidenced the formation of charge-compensating structural defects owing to Mg²⁺ substitution by Nd³⁺ in the spinel crystalline lattice. Nd³⁺ ions were incorporated up to 0.2at.% in spinel crystalline lattice, largely higher than that possible in MgAl₂O₄ single-crystals. SPS thus appears as an appropriate technique to manufacture transparent materials with out-of-equilibrium structure and composition.

Keywords: Neodymium, spinel, transparent ceramics, SPS, spectroscopy

Download English Version:

https://daneshyari.com/en/article/5460713

Download Persian Version:

https://daneshyari.com/article/5460713

<u>Daneshyari.com</u>