ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

An efficient, broad-band red-emitting Li₂MgTi₃O₈:Mn⁴⁺ phosphor for blue-converted white LEDs

Shaoan Zhang, Yihua Hu*, He Duan, Yinrong Fu, Miao He

School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Waihuan Xi Road, No.100, Guangzhou 510006, People's Republic of China

ARTICLE INFO

Article history:
Received 28 June 2016
Received in revised form
17 September 2016
Accepted 20 September 2016
Available online 21 September 2016

Keywords: Red phosphor Photoluminescence Li₂MgTi₃O₈:Mn⁴⁺

ABSTRACT

We describe the preparation of a novel red-emitting $\text{Li}_2\text{MgTi}_3\text{O}_8\text{:Mn}^{4+}$ nanocrystalline phosphor by a soft chemical method. $\text{Li}_2\text{MgTi}_3\text{O}_8\text{:Mn}^{4+}$ phosphor gained our attention and interest due to its low-cost and unique luminescent properties. The deep red emission from $\text{Li}_2\text{MgTi}_3\text{O}_8\text{:Mn}^{4+}$ shows an abnormal broad band at 680 nm, with a quantum efficiency (QE) of 34%, and good thermal resistance of $\Delta E = 0.214$ eV $\text{Li}_2\text{MgTi}_3\text{O}_8\text{:Mn}^{4+}$ phosphor exhibits the most intense excitation absorption in the blue region which matches the emission wavelength of the blue LEDs, indicating its potential to enhance the color rendering performance of white LEDs. The deep red emission originates from the $^2\text{Eg} \rightarrow ^4\text{A}_2\text{g}$ transition of Mn^{4+} . The spectral features are well explained by the Tanabe-Sugano diagram, with crystal-field and Racah parameters of $Dq = 2.06 \times 10^3$ cm $^{-1}$, $B = 0.76 \times 10^3$ cm $^{-1}$ and $C = 3.00 \times 10^3$ cm $^{-1}$. A device was fabricated in which this red phosphor $\text{Li}_2\text{MgTi}_3\text{O}_8\text{:Mn}^{4+}$ was used to coat the blue LEDs. The fabricated device demonstrated that the prepared material can act as a novel potential red phosphor for warm white LEDs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

From the point of view of sustained social development, energy saving has been one of the most critical topics in the 21st century. Owing to their high efficiency, energy saving ability, long lifetime and environmental friendliness, white light-emitting diodes (LEDs) are widely seen as a superior replacement for conventional inefficient incandescent and fluorescent lightings [1–5]. LEDs are in the spotlight for several applications, e.g., backlighting, general illumination, and in liquid crystal displays of digital cameras, cellular phones, and monitors of notebook computers. Therefore, the white LEDs industry has gradually found an important position in global economic growth, which provides the motivation for further studies of white LEDs.

To date, a variety of strategies have been developed to produce white LEDs. Tri-phosphor LED chips, which combine red, green, and blue LEDs to produce white light, exhibit drifts of the color rendering index (CRI) and color temperature (CT), because the devices are susceptible to temperature [6]. The most well-known approach for commercial, white LEDs is based on the

combination of an InGaN blue LED and a yellow phosphor, $Y_3Al_5O_{16}$:Ce (YAG:Ce) [7,8]. When driven by a certain current, white light is obtained by combining the emitted yellow light from YAG:Ce with the transmitted blue light. However, the lack of a red spectral component usually results in a highly correlated CT (7756 K) and a poor CRI (Ra = 75), which largely restricts the broader applications of white LEDs [1,2,9]. To overcome the above drawbacks, one of the best strategies is the addition of a redemitting phosphor, which can efficiently absorb blue light. Thus, there is an urgent demand for a novel red phosphor with ideal luminescent performance. This high demand has motivated studies of novel red-emitting luminescent materials activated by rare earth elements, such as Eu²⁺-doped nitrides, oxynitrides, silicates, phosphates and aluminosilicates [10–13]. Among these systems, Eu²⁺-doped (oxy)nitrides have been the subjects of many studies due to their excellent performance parameters, such as high quantum efficiency and good thermal stability. However, in addition to economic considerations, extreme operating conditions restrict a wide range of application of Eu²⁺-doped (oxy)nitrides. For example, β -SiAlON:Eu²⁺ red phosphor was synthesized at 1900 °C under nitrogen at 10 MPa [14]. However, the photon reabsorption is unavoidable in nitrides, resulting in color change and luminous reduction. Recently, CdSe quantum dots (QDs) have attracted much

^{*} Corresponding author. *E-mail address:* huyh@gdut.edu.cn (Y. Hu).

attention because they can provide tunable emission ranging from 500 nm to 650 nm. Thus, CdS QDs might be good candidates as promising red-emitting components for blue-LEDs converted white LEDs [15,16]. However, the synthetic process for CdS QDs is still under study.

In recent years, non-rare-earth Mn⁴⁺-activated red phosphor has emerged as a potential competitor to commercial Eu²⁺-doped nitrides, driven by the soaring price of rare earths and the strong desire to minimize the cost of white LED devices. Compared with Eu²⁺-doped (oxy)nitrides and CdS QDs, red phosphors AMF₆:Mn⁴⁺ (A = Na, K, Cs, Ba, Rb; M = Si, Ti, Ge, Zr), such as $KNaSiF_6:Mn^{4+}$ [17], $K_2SiF_6:Mn^{4+}$ [18], $BaSiF_6:Mn^{4+}$ [19], $Cs_2ZrF_6:Mn^{4+}$ [20], $K_2GeF_6:Mn^{4+}$ [21], $Cs_2TiF_6:Mn^{4+}$ [22], $K_2TiF_6:Mn^{4+}$ [23], have become a hot research topic for their potential applications in white LEDs. This is due to their milder preparative conditions and admirable luminescent characteristics, which make them suitable for use in warm white LEDs. These Mn⁴⁺-doped fluorides give narrow emissions in the visible red spectral region, which are highly perceived by the human eye and lead to excellent chromatic saturation of red spectra. Furthermore, red-emitting Mn⁴⁺-activated oxide phosphors have received burgeoning interest due to their low cost and excellent physical/chemical stability. For example, Peng et al. found that the non-rare-earth phosphor Sr₄Al₁₄O₂₅:Mn⁴⁺ exhibited red luminescence more intensely than the commercial phosphor 3.5MgO.0.5MgF₂.GeO₂:Mn⁴⁺ (Li₂Mg-Ti₃O₈: Mn⁴⁺) upon blue excitation [24]; Wang et al. proved that the non-rare-earth BaMgAl_{10-2x}O₁₇:xMn⁴⁺, xMg²⁺ phosphor exhibited bright, narrow-band luminescence and could serve as red component for warm white LEDs [25]: Hu et al. reported that Mn⁴⁺ activated Li₂MgTiO₄ phosphor exhibited a deep red emission as a color converter for warm white LEDs [26].

Herein, Li₂MgTi₃O₈:Mn⁴⁺ phosphor was prepared successfully by a mild soft chemical technology. As displayed in Fig. 1, the spinel structure of Li₂MgTi₃O₈ consists of a cubic close-packed array of anions, with one eighth of the tetrahedral and one half of the octahedral interstics occupied by cations; in the Li₂MgTi₃O₈ host, Li⁺/Mg²⁺ occupies a tetrahedral site, whereas Ti⁴⁺ shows a strong preference for an octahedral site [27]. It is generally known that Mn⁴⁺ ion is accommodated and stabilized only in octahedral sites [23–25]. When Mn⁴⁺ occupies an octachedral site, it generally gives a deep red emission between 600 and 760 nm and shows a

strong and broad absorption band from 250 to 480 nm. Such a close-packed structure with abundant TiO₆ octahedral sites is highly favorable for accommodating and stabilizing Mn⁴⁺ ions, and is thus expected to enable a high efficiency of luminescence when Mn⁴⁺ is doped into the Li₂MgTi₃O₈ host. Indeed, Li₂MgTi₃O₈:Mn⁴⁺ shows a brilliant deep red emission with a OE of 34% under excitation at 470 nm and exhibits a broad excitation band ranging from 250 to 500 nm. Unexpectedly, its emission intensity is much brighter than that of the commercial MMG:Mn phosphor. A variety of techniques, such as diffuse reflection spectra, photoluminescence (PL) spectra, and temperature-dependent PL/decay measurements, were utilized to characterize the photoluminescence properties of the Li₂MgTi₃O₈:Mn⁴⁺ phosphor. To demonstrate its potential as a novel red phosphor for blueconverted white LEDs, white LEDs were fabricated using blue LED chips coated with the commercial yellow phosphor (YAG:Ce) and the as-prepared phosphor Li₂MgTi₃O₈:Mn⁴⁺.

2. Experimental procedures

2.1. Synthesis

Li₂MgTi₃O₈:Mn⁴⁺ samples were prepared by the Pechini-type sol-gel method, as follows. All the chemicals, namely, Li₂CO₃ (AR), $Mn(CH_3COO)_2 \cdot 4H_2O$ (AR), $Mg(CH_3COO)_2 \cdot 4H_2O$ (AR), TiO_2 nanoparticles (99,999%, 28 nm) and citric acid were used as starting materials. A typical synthesis procedure for Li₂Mg- Ti_3O_8 : 0.5%Mn⁴⁺ phosphor is as follows: 0.953 g Li₂CO₃, 1.072 g Mn(CH₃COO)₂·4H₂O, 0.018 g Mg(CH₃COO)₂·4H₂O and 1.192 g TiO₂ were weighed based on the chemical proportion, Li₂MgTi_{3×(1-} _{0.005)}O₈:0.005Mn⁴⁺, with the addition of 5 mol% excess of Li₂CO₃. Excess lithium was added to compensate for loss, which occurs at a high temperature. The molar ratio of citric acid to total metal ions was 1:1. Li_2CO_3 , $\text{Mn}(\text{CH}_3\text{COO})_2 \cdot 4\text{H}_2\text{O}$, $\text{Mg}(\text{CH}_3\text{COO})_2 \cdot 4\text{H}_2\text{O}$, and TiO2 were dissolved in deionized water under vigorous stirring. Simultaneously, a stoichiometric amounts of citric acid was added to the solution. At the end, the pH value of the mixed solution was adjusted to 7-8 by dropwise addition of NH₃·H₂O, and the transparent solution was heated to 100 °C in a water bath to produce a brown transparent resin. The resin was further dried at 160 °C in an oven for 10 h. Finally, the dried gel was annealed at

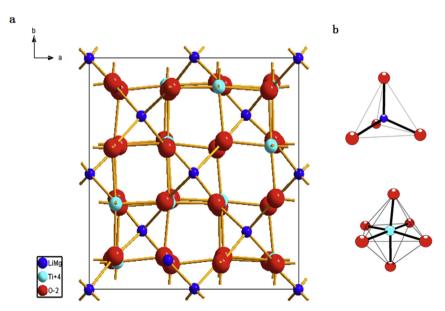


Fig. 1. (a). Schematic illustration of the crystal structure of Li₂MgTi₃O₈; (b) shows the of LiO₄ or MgO₄ tetrahedron and the TiO₆ octahedron.

Download English Version:

https://daneshyari.com/en/article/5461012

Download Persian Version:

https://daneshyari.com/article/5461012

Daneshyari.com