Accepted Manuscript

Synthesis and characterization of Au-C₆₀ nanocomposite

Rahul Singhal, P. Sharma, R. Vishnoi, D.K. Avasthi

PII: S0925-8388(16)33519-8

DOI: 10.1016/j.jallcom.2016.11.051

Reference: JALCOM 39546

To appear in: Journal of Alloys and Compounds

Received Date: 9 August 2016

Revised Date: 1 November 2016 Accepted Date: 4 November 2016

Please cite this article as: R. Singhal, P. Sharma, R. Vishnoi, D.K. Avasthi, Synthesis and characterization of Au-C₆₀ nanocomposite, *Journal of Alloys and Compounds* (2016), doi: 10.1016/j.jallcom.2016.11.051.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Synthesis and Characterization of Au-C₆₀ Nanocomposite

Rahul Singhal^{1,*}, P. Sharma¹, R. Vishnoi¹, D. K. Avasthi²

¹Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur- 302017, Rajasthan

²Amity University, Sector 125, Noida, U.P.

Abstract

Au- C_{60} nanocomposite thin film (Au nanoparticles embedded in fullerene C_{60} matrix) is synthesized by thermal co-evaporation method and subsequent thermal annealing from 150°C to 300°C. A very small concentration of Au (~ 2 at.%) is chosen in order to minimize the deterioration of the physical and chemical properties of fullerene C_{60} due to the presence of metal. Spherical shaped Au nanoparticles with a diameter of 2.1 ± 0.04 nm are clearly seen in the TEM images of the nanocomposite annealed at 200°C. A broad surface plasmon resonance peak at ~ 581 nm emerges in UV-visible absorption spectrum due to the evolution of Au nanoparticles at a temperature of 250°C, which is further blue shifted at ~ 554 nm with a narrower FWHM at 300°C. The presence of Au nanoparticles is also confirmed by X-ray diffraction with Au (111) and Au (200) fcc reflections. Thermally induced transformations of fullerene C_{60} matrix at high temperatures is studied by Raman spectroscopy on pure fullerene C_{60} films (without metal). The blue shift of LSPR at a temperature of 300°C is ascribed to the transformation of fullerene C_{60} matrix into amorphous carbon and is explained in terms of Mie theory. TEM results show the growth of Au nanoparticles in fullerene matrix at higher temperatures due to the enhanced diffusion of Au atoms and Ostwald ripening.

Keywords: LSPR, nanoparticles, fullerene, optical properties

1. Introduction

Fullerene is a well recognized material and a key topic for scientific community that is being used for tremendous applications in different fields such as in biomedical, optical devices, hydrogen storage, energy conserving devices etc due to its various attractive properties of high electron affinity, unique molecular size, high reactivity, optical limiting and biological activity [1-4]. Several groups are working on this material to exploit it for diverse applications. In order

_

^{*} Corresponding Author: Email: rsinghal.phy@mnit.ac.in

Download English Version:

https://daneshyari.com/en/article/5461263

Download Persian Version:

https://daneshyari.com/article/5461263

<u>Daneshyari.com</u>