Accepted Manuscript

Efficient ceria-zirconium oxide catalyst for carbon dioxide conversions: Characterization, catalytic activity and thermodynamic study

Praveen Kumar, Patrick With, Vimal Chandra Srivastava, Roger Gläser, Indra Mani Mishra

PII: S0925-8388(16)33430-2

DOI: 10.1016/j.jallcom.2016.10.293

Reference: JALCOM 39462

To appear in: Journal of Alloys and Compounds

Received Date: 1 May 2016

Revised Date: 13 September 2016 Accepted Date: 29 October 2016

Please cite this article as: P. Kumar, P. With, V.C. Srivastava, R. Gläser, I.M. Mishra, Efficient ceria-zirconium oxide catalyst for carbon dioxide conversions: Characterization, catalytic activity and thermodynamic study, *Journal of Alloys and Compounds* (2016), doi: 10.1016/j.jallcom.2016.10.293.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Efficient ceria-zirconium oxide catalyst for carbon dioxide conversions: characterization, catalytic activity and thermodynamic study

Praveen Kumar ^{a,c*}, Patrick With^b, Vimal Chandra Srivastava^a, Roger Gläser ^c, Indra Mani Mishra^{a,d}

*Corresponding Author: Phone: +91–1332–285889; fax: +91–1332–276535. **E-mail addresses**: praveen.zon@gmail.com, praveen.singh@daad-alumni.de (P. Kumar)

Abstract

In this study, ceria-zirconia based catalysts (CeO₂, ZrO₂ and Ce_{0.5}Zr_{0.5}O₂) catalysts were synthesized by hydrothermal method and characterized by N₂-sorption, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Acidity and basicity of synthesized catalysts have been investigated by NH₃- and CO₂- temperature-programmed desorption (TPD). Brunauer-Emmett-Teller (BET) surface area of CeO₂, Ce_{0.5}Zr_{0.5}O₂ and ZrO₂ were found to be 88, 117 and 70 m² g⁻¹ and average crystalline sizes was 9.48, 7.09 and 9.45 nm, respectively. These catalysts were further used for direct conversion of CO₂ with methanol for the synthesis of dimethyl carbonate (DMC). DMC yield was found to be highly dependent upon the both basicity and acidity of catalysts. Ce_{0.5}Zr_{0.5}O₂ catalysts showed better activity as compared to CeO₂ and ZrO₂ catalyst. Effect of reaction conditions (such as catalysts dose, reaction temperature and reaction time) and catalyst reusability was studied with Ce_{0.5}Zr_{0.5}O₂ catalyst. The optimum operating condition for direct conversion of CO₂ into DMC at constant pressure 150 bar, reaction time=24 h, catalyst dose=1.25 g and temperature=120 °C. Moreover, chemical

^aDepartment of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India

^bLeibniz-Institutes für Oberflächenmodifizierung e. V. (IOM), Permoserstr. 15, D-04318 Leipzig, Germany

^cInstitute of Chemical Technology, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany

^dDepartment of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad - 826004, Jharkhand, India

Download English Version:

https://daneshyari.com/en/article/5461357

Download Persian Version:

https://daneshyari.com/article/5461357

<u>Daneshyari.com</u>