Accepted Manuscript

Facile fabrication of phenothiazine-tetracyanoquinodimethane co-crystal microwires with ambipolar charge transport characteristics

Jia-jia Li, Shao-hui Zhang, Feng-xia Wang, Hao-di Wu, Li-yi Shi, Ge-bo Pan

PII:	S0167-577X(17)31338-1
DOI:	http://dx.doi.org/10.1016/j.matlet.2017.09.003
Reference:	MLBLUE 23117
To appear in:	Materials Letters
Received Date:	12 July 2017
Revised Date:	28 August 2017
Accepted Date:	1 September 2017

Please cite this article as: J-j. Li, S-h. Zhang, F-x. Wang, H-d. Wu, L-y. Shi, G-b. Pan, Facile fabrication of phenothiazine-tetracyanoquinodimethane co-crystal microwires with ambipolar charge transport characteristics, *Materials Letters* (2017), doi: http://dx.doi.org/10.1016/j.matlet.2017.09.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Facile fabrication of phenothiazine-tetracyanoquinodimethane co-crystal

microwires with ambipolar charge transport characteristics

Jia-jia Li^{a,b}, Shao-hui Zhang^a, Feng-xia Wang^a*, Hao-di Wu^a, Li-yi Shi^b and Ge-bo Pan^a*

^a Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, P. R

China.

^bDepartment of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, P. R. China.

Abstract

Novel co-crystal microwires based on phenothiazine (PTZ) and tetracyanoquinodimethane (TCNQ) have been fabricated using a facile solution method and fully characterized. The microwires had well-defined shapes, smooth surfaces and high crystalline. Moreover, the co-crystal microwires exhibited a significant absorption at wavelengths between 900 and 2400 nm owing to the charge-transfer interaction between PTZ and TCNQ. The prototype field-effect transistor with the bottom-gate was directly constructed, exhibiting typical ambipolar charge transport characteristics.

Keywords: Organic; Semiconductors; Co-crystal microwires; Ambipolar transport

* Corresponding authors. Fax: +86-512-62872663 (G-B. Pan).

E-mail address: gbpan2008@sinano.ac.cn (G-B. Pan).

Download English Version:

https://daneshyari.com/en/article/5462621

Download Persian Version:

https://daneshyari.com/article/5462621

Daneshyari.com