## Accepted Manuscript

Preparation of Bi<sub>3</sub>O<sub>4</sub>Br/BiOCl composite via ion-etching method and its excellent photocatalytic activity

Xingzheng Liu, Xiaole Jiang, Zhiqiang Chen, Jingxiong Yu, Yiming He

PII: S0167-577X(17)31332-0

DOI: http://dx.doi.org/10.1016/j.matlet.2017.08.134

Reference: MLBLUE 23111

To appear in: Materials Letters

Received Date: 2 July 2017 Revised Date: 27 August 2017 Accepted Date: 31 August 2017



Please cite this article as: X. Liu, X. Jiang, Z. Chen, J. Yu, Y. He, Preparation of Bi<sub>3</sub>O<sub>4</sub>Br/BiOCl composite via ionetching method and its excellent photocatalytic activity, *Materials Letters* (2017), doi: http://dx.doi.org/10.1016/j.matlet.2017.08.134

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Preparation of Bi<sub>3</sub>O<sub>4</sub>Br/BiOCl composite via ion-etching method

and its excellent photocatalytic activity

Xingzheng Liu, Xiaole Jiang, Zhiqiang Chen, Jingxiong Yu, Yiming He\*

Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004,

China

Abstract: Bi<sub>3</sub>O<sub>4</sub>Br/BiOCl composite was synthesized using a facile ion-etching method with

Bi<sub>3</sub>O<sub>4</sub>Br and HCl solution as precursors. Characterization results proved the formation of the

binary system via controlling HCl amount. Photocatalytic test indicated that the synthesized

Bi<sub>3</sub>O<sub>4</sub>Br/BiOCl composite has excellent photocatalytic activity in Rhodamine B degradation,

mainly due to the enhanced separation efficiency of charge carriers. The optimal sample presents a

degradation rate of 0.019 min<sup>-1</sup>, which is 3.1 and 6.3 times higher than that of pure BiOCl and

Bi<sub>3</sub>O<sub>4</sub>Br, respectively.

**Keywords:** 

photocatalysis;

Bi<sub>3</sub>O<sub>4</sub>Br/BiOCl;

solar

energy

materials; semiconductors;

nanocomposites

1.Introduction

Removal of environmental contaminants using solar energy-driven photocatalysts has drawn

increasing attention over the last few decades. Among the various semiconductor photocatalysts,

BiOCl shows its specialty in degradation of dyes due to its unique layered crystal structure. The

internal static electric field induced by the [Bi<sub>2</sub>O<sub>2</sub>] and double [CI] layers endow BiOCl elevated

separation efficiency of photogenerated electron-hole pairs [1]. Hence, BiOCl presents high

photocatalytic activity and attaches scientists' attention. Till to now, many studies focused on

BiOCl have been reported, which can be mainly summarized as using three different approaches

(introduction of nano/micro structure [2], element doping [3], and heterotructured composite

\* Corresponding author. Te/Faxl: +86-0579-82291500

E-mail address: <a href="mailto:hym@zjnu.cn">hym@zjnu.cn</a> (Y. He)

1

## Download English Version:

## https://daneshyari.com/en/article/5462629

Download Persian Version:

https://daneshyari.com/article/5462629

**Daneshyari.com**