Accepted Manuscript

Ultrafast synthesis of Mn_{0.8}Co_{0.2}CO₃/graphene composite as anode material by microwave solvothermal strategy with enhanced Li storage properties

Qinqin Xiong, Jingjing Lou, Yujia Zhou, Shaojun Shi, Zhenguo Ji

PII: S0167-577X(17)31380-0

DOI: http://dx.doi.org/10.1016/j.matlet.2017.09.045

Reference: MLBLUE 23159

To appear in: Materials Letters

Received Date: 18 July 2017
Revised Date: 30 August 2017
Accepted Date: 12 September 2017

Please cite this article as: Q. Xiong, J. Lou, Y. Zhou, S. Shi, Z. Ji, Ultrafast synthesis of Mn_{0.8}Co_{0.2}CO₃/graphene composite as anode material by microwave solvothermal strategy with enhanced Li storage properties, *Materials Letters* (2017), doi: http://dx.doi.org/10.1016/j.matlet.2017.09.045

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Ultrafast synthesis of $Mn_{0.8}Co_{0.2}CO_3$ /graphene composite as anode material by microwave solvothermal strategy with enhanced Li storage properties

Qinqin Xiong^a, Jingjing Lou^a, Yujia Zhou^b, Shaojun Shi^{b*}, Zhenguo Ji^{a*}

a College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou

310018, People's Republic of China

b Jiangsu Lab of Advanced Functional Material, Changshu Institute of Technology, Changshu, 215500,

China

Abstract

Carbonate is recently studied as anode material for lithium ion battery due to its relatively high capacity compared to relative oxides. In order to improve the time-efficiency of synthesis, an ultrafast solvothermal process assisted with microwave is carried out to obtain well-constructed Mn_{0.8}Co_{0.2}CO₃/graphene composite as anode material for lithium ion batteries. The as-prepared Mn_{0.8}Co_{0.2}CO₃/graphene composite with a graphene amount of 17.5 wt.% exhibits a morphology of cubic particles in graphene without any impurity. Mn_{0.8}Co_{0.2}CO₃/graphene delivers high initial charge capacities of 1033 mAh g⁻¹. And after 120 cycles, charge/discharge capacities of 737/735 mAh g⁻¹ are maintained at 0.2 A g⁻¹. Even at 2 A g⁻¹, the composite can still deliver high charge/discharge capacities of 500/501 mAh g⁻¹. It is promising to obtain carbonate/graphene anode materials rapidly through such ultrafast solvothermal process assisted by microwave for application.

Keywords: Ultrafast synthesis; Solvothermal; Carbon materials; Composite materials; Energy storage and conversion; Lithium-ion battery.

E-mail address: jizg@hdu.edu.cn (Z.G. Ji).

1

^{*} Corresponding author: Tel.: +86 512 52251895; fax: +86 512 52251895.

E-mail address: ssj0275@cslg.edu.cn (S.J. Shi).

^{*} Corresponding author: Tel.: +86 571 87713535.

Download English Version:

https://daneshyari.com/en/article/5462647

Download Persian Version:

https://daneshyari.com/article/5462647

<u>Daneshyari.com</u>