Accepted Manuscript

N-doped Ni/C/TiO₂ nanocomposite as effective photocatalyst for water splitting

Nasser A.M. Barakat, Enas Ahmed, Mohamed T. Amen, Mohammad Ali Abdelkareem, A.A. Farghali

PII:	S0167-577X(17)31361-7
DOI:	http://dx.doi.org/10.1016/j.matlet.2017.09.009
Reference:	MLBLUE 23123
To appear in:	Materials Letters
Received Date:	4 July 2017
Revised Date:	17 August 2017
Accepted Date:	5 September 2017

Please cite this article as: N.A.M. Barakat, E. Ahmed, M.T. Amen, M.A. Abdelkareem, A.A. Farghali, N-doped Ni/ C/TiO₂ nanocomposite as effective photocatalyst for water splitting, *Materials Letters* (2017), doi: http://dx.doi.org/ 10.1016/j.matlet.2017.09.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

N-doped Ni/C/TiO₂ nanocomposite as effective photocatalyst for water splitting

Nasser A. M. Barakat^{1,2,*}, Enas Ahmed³, Mohamed T. Amen¹, Mohammad Ali Abdelkareem^{2,4}, A.A. Farghali⁵

 ¹Organic Materials and Fiber Engineering Dept., and Bionanosytem Engineering Dept., Chonbuk National University, Jeonju 561-756, Republic of Korea.
²Chemical Engineering Department, Minia University, El-Minia, Egypt.
³Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Egypt.
⁴Department of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
⁵Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Egypt.
Corresponding author: Nasser A. M. Barakat, *nasser@jbnu.ac.kr*, Tel:+82632702363<u>Fa</u>x:

+82632704248

Abstract:

N-doped Ni/C/TiO₂ nanocomposite is introduced as an effective photocatalyst for water splitting under visible light radiation. The proposed photocatalyst contains most of the effective co-catalysts enhancing the photocatalytic activity of the titanium oxide. The nanocomposite was prepared by sintering a vacuously dried sol-gel composed of polyvinylpyrrolidone, titanium isopropoxide and nickel acetate under nitrogen atmosphere at 700 °C for 3h. TEM, XRD and XPS analyses confirmed that the introduced catalyst is N-doped & TiO₂-incorporated amorphous carbon sheets decorated by Ni nanoparticles. The introduced nanocomposite revealed distinct performance as photocatalyst toward water splitting reaction, numerically the generated hydrogen was 0.383 mmol.sec⁻¹.g_{cat}⁻¹; 8.6 ml.sec⁻¹.g_{cat}⁻¹. However, nickel content somewhat influences the catalytic performance; 15 wt% reveals the best performance.

Keywords: Nanocomposites; Carbon materials; Water photosplitting

Download English Version:

https://daneshyari.com/en/article/5462660

Download Persian Version:

https://daneshyari.com/article/5462660

Daneshyari.com