Accepted Manuscript

From nanosized precursors to high performance ceramics: The case of $Bi_2Ca_2Co_{1.7}O_x$

M.A. Madre, Sh. Rasekh, K. Touati, C. Salvador, M. Depriester, M.A. Torres, P. Bosque, J.C. Diez, A. Sotelo

PII: S0167-577X(17)30026-5

DOI: http://dx.doi.org/10.1016/j.matlet.2017.01.031

Reference: MLBLUE 21984

To appear in: Materials Letters

Received Date: 7 June 2016

Revised Date: 16 December 2016 Accepted Date: 6 January 2017

Please cite this article as: M.A. Madre, Sh. Rasekh, K. Touati, C. Salvador, M. Depriester, M.A. Torres, P. Bosque, J.C. Diez, A. Sotelo, From nanosized precursors to high performance ceramics: The case of Bi₂Ca₂Co_{1.7}O_x, *Materials Letters* (2017), doi: http://dx.doi.org/10.1016/j.matlet.2017.01.031

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

From nanosized precursors to high performance ceramics: The case of Bi₂Ca₂Co_{1.7}O_x

M. A. Madre^{1,*}, Sh. Rasekh¹, K. Touati², C. Salvador¹, M. Depriester², M. A. Torres¹, P. Bosque¹, J. C. Diez¹, A. Sotelo¹

¹Instituto de Ciencia de Materiales de Aragón (CSIC-Universidad de Zaragoza), Mª de Luna, 3. 50018-Zaragoza, Spain.

²UDSMM (EA 4476), MREI-1, Université du Littoral Côte d'Opale, 59140 Dunkerque, France

Abstract

Bi₂Ca₂Co_{1.7}O_x thermoelectric ceramics were prepared by four different synthesis routes: coprecipitation with ammonium carbonate or oxalic acid, attrition milling, and solid state (as reference). Microstructure showed that coprecipitation and attrition milling produced sintered materials with less porosity and smaller particle sizes than the solid state ones. Thermoelectric properties reflect the microstructure, leading to materials with lower electrical resistivity and higher Seebeck coefficient, when compared with the solid state ones. In spite of an increase in thermal conductivity in these samples due to their lower porosity, the maximum estimated Figure-of-Merit is higher than in sintered materials.

Keywords: Electroceramics; Sintering; Electrical properties; Microstructure.

* Corresponding author: M. A. Madre. amadre@unizar.es. Dept. Ciencia de Materiales; C/Mª de Luna, 3; 50018-Zaragoza; Spain. Tel: +34 976762617.

Download English Version:

https://daneshyari.com/en/article/5463017

Download Persian Version:

https://daneshyari.com/article/5463017

<u>Daneshyari.com</u>