ELSEVIER

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/mlblue

SnO₂ quantum dots/graphene aerogel composite as high-performance anode material for sodium ion batteries

Yu Wang ^a, Yuhong Jin ^{b,*}, Chenchen Zhao ^b, Yuhao Duan ^a, Xinzi He ^c, Mengqiu Jia ^{a,*}

- ^a Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
- ^b Beijing Guyue New Materials Research Institute, Beijing University of Technology, Beijing 100124, China
- ^c School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

ARTICLE INFO

Article history: Received 26 October 2016 Received in revised form 15 December 2016 Accepted 23 December 2016 Available online 27 December 2016

Keywords:
Sodium ion batteries
SnO₂ quantum dots
Composite materials
Energy storage and conversion
Cycling performance

ABSTRACT

A three-dimensional SnO_2 quantum dots/graphene aerogel (SnO_2 QDs/GA) composite was prepared using a facile and scalable strategy without adding any surfactant and reducing agent .This as-prepared nanocomposite, with zero-dimensional SnO_2 QDs (2–5 nm) anchoring and dispersing on the surface of three-dimensional graphene aerogel, exhibits better properties as anode material for sodium ion batteries than bare SnO_2 for its higher reversible capacity (319 mAh g⁻¹ at 50 mA g⁻¹ after 50 cycles) and stability (rate capacity still remains 150 mAh g⁻¹ at 800 mA g⁻¹). Such three-dimensional graphene aerogel could not only act as an electronic conductive matrix for the fast transportation of sodium ion and electrons, but also provide double protection against the aggregation and volume changes of SnO_2 QDs during cycling.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Sodium ion batteries (SIBs) are regarded as an attractive alternative to lithium ion batteries (LIBs) with similar energy storage process and lower cost [1]. SnO₂ is a promising candidate as anode material for SIBs for its large Na storage capacity [2]. However SnO₂ suffers from severe volume change upon discharge/charge process which will cause pulverization of electrode. Therefore, embedding ultrafine SnO2 nanoparticles onto conductive carbon-based substrate is an effective strategy to tackle the abovementioned problems. Among the reported carbon-based materials, graphene is a good substrate due to its superior conductivity, good mechanical strength and large surface area. Recently, Chen's group [3] used ice-templated method to prepare SnO₂ nanoparticles/3D graphene composite (SnO₂@3DG). SnO₂@3DG showed a reversible capacity of 432 mAh g⁻¹ after 200 cycles at 100 mA g⁻¹ Bai et al. [4] reported a facile microwave-assisted polyol reduction method to obtain SnO₂/graphene nanocomposites. The as-prepared SnO₂/graphene nanocomposites showed a high reversible capacity of 220 mAh g⁻¹ at 0.1 A g⁻¹. Importantly, Patra and coworkers [5] synthesized 1nm SnO₂ particles/graphene composite using supercritical CO₂ fluid. Their results confirm the sluggish Sn-Na alloying/dealloying reaction is responsible for the lower measured capacity.

E-mail addresses: jinyh@bjut.edu.cn (Y. Jin), jiamq@mail.buct.edu.cn (M. Jia).

However, to the best of our knowledge, there are few reports on the preparation of SnO₂/graphene without adding extra surfactant and reducing agent for the application of SIBs. Especially, a hydrothermal method is generalizing and systematizing controllable syntheses of nano-morphologies in a sealed heated solution [6]. Therefore, we reported the preparation of SnO₂ quantum dots/graphene aerogel (SnO₂ QDs/GA) using a facile hydrothermal strategy and subsequently heat-treatment process. Benefitting from the SnO₂ quantum size and conductive network GA with specifically large surface area, the as-prepared SnO₂ QDs/GA exhibited good electrochemical performance on rate capability and cyclic stability for SIBs.

2. Experimental

Graphene oxide was prepared using a modified Hummers' method [7]. 0.35 g SnCl₄·5H₂O was dissolved into the GO dispersion (2 mg mL⁻¹) to form a transparent solution. Then the mixed solution was sealed into a 100 ml Teflon-lined stainless steel autoclave and heated at 180 °C for 12 h. After that, the reaction mixture was cooled down to room temperature. The obtained cylindrical was washed repeatedly with distilled water, freeze-dried and calcined at 500 °C for 4 h at 5 °C min⁻¹ in N₂ atmosphere to obtain SnO₂ QDs/GA. Bare SnO₂ was synthesized by similar method without adding GO. The morphology was obtained by scanning electron microscopy (FESEM, JSM-7001F) and high-resolution transmission

^{*} Corresponding authors.

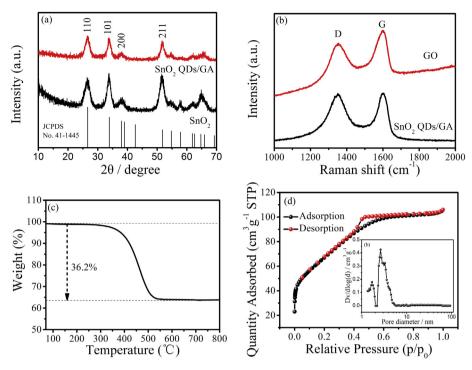


Fig. 1. (a) XRD patterns of SnO₂ QDs/GA, (b) Raman spectra of GO and SnO₂ QDs/GA, (c) TGA curve of SnO₂ QDs/GA and (d) BET measurement of SnO₂ QDs/GA. The inset shows pore-size distribution.

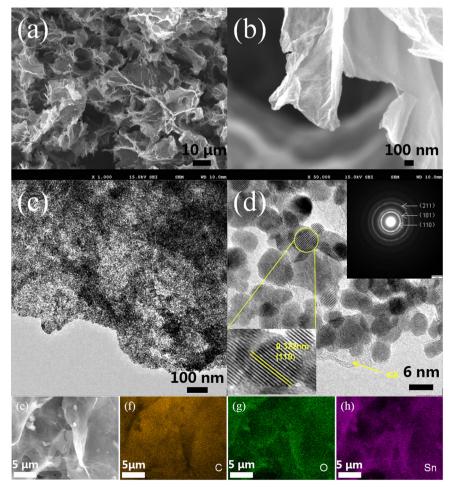


Fig. 2. (a-b) SEM images of SnO₂ QDs/GA. (c-d) HRTEM images of SnO₂ QDs/GA. (e) SEM images of SnO₂ QDs/GA and the corresponding elemental mapping images of (f) C, (g) O, (h) Sn.

Download English Version:

https://daneshyari.com/en/article/5463056

Download Persian Version:

https://daneshyari.com/article/5463056

<u>Daneshyari.com</u>