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a b s t r a c t

A three-dimensional SnO2 quantum dots/graphene aerogel (SnO2 QDs/GA) composite was prepared using
a facile and scalable strategy without adding any surfactant and reducing agent .This as-prepared
nanocomposite, with zero-dimensional SnO2 QDs (2–5 nm) anchoring and dispersing on the surface of
three-dimensional graphene aerogel, exhibits better properties as anode material for sodium ion batter-
ies than bare SnO2 for its higher reversible capacity (319 mAh g�1 at 50 mA g�1 after 50 cycles) and sta-
bility (rate capacity still remains 150 mAh g�1 at 800 mA g�1). Such three-dimensional graphene aerogel
could not only act as an electronic conductive matrix for the fast transportation of sodium ion and elec-
trons, but also provide double protection against the aggregation and volume changes of SnO2 QDs during
cycling.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Sodium ion batteries (SIBs) are regarded as an attractive alter-
native to lithium ion batteries (LIBs) with similar energy storage
process and lower cost [1]. SnO2 is a promising candidate as anode
material for SIBs for its large Na storage capacity [2]. However SnO2

suffers from severe volume change upon discharge/charge process
which will cause pulverization of electrode. Therefore, embedding
ultrafine SnO2 nanoparticles onto conductive carbon-based sub-
strate is an effective strategy to tackle the abovementioned prob-
lems. Among the reported carbon-based materials, graphene is a
good substrate due to its superior conductivity, good mechanical
strength and large surface area. Recently, Chen’s group [3] used
ice-templated method to prepare SnO2 nanoparticles/3D graphene
composite (SnO2@3DG). SnO2@3DG showed a reversible capacity
of 432 mAh g�1 after 200 cycles at 100 mA g�1

. Bai et al. [4] reported
a facile microwave-assisted polyol reduction method to obtain
SnO2/graphene nanocomposites. The as-prepared SnO2/graphene
nanocomposites showed a high reversible capacity of 220 mAh g�1

at 0.1 A g�1. Importantly, Patra and coworkers [5] synthesized 1-
nm SnO2 particles/graphene composite using supercritical CO2 fluid.
Their results confirm the sluggish Sn-Na alloying/dealloying reaction
is responsible for the lower measured capacity.

However, to the best of our knowledge, there are few reports on
the preparation of SnO2/graphene without adding extra surfactant
and reducing agent for the application of SIBs. Especially, a
hydrothermal method is generalizing and systematizing control-
lable syntheses of nano-morphologies in a sealed heated solution
[6]. Therefore, we reported the preparation of SnO2 quantum dots/-
graphene aerogel (SnO2 QDs/GA) using a facile hydrothermal strat-
egy and subsequently heat-treatment process. Benefitting from the
SnO2 quantum size and conductive network GA with specifically
large surface area, the as-prepared SnO2 QDs/GA exhibited good
electrochemical performance on rate capability and cyclic stability
for SIBs.

2. Experimental

Graphene oxide was prepared using a modified Hummers’
method [7]. 0.35 g SnCl4�5H2O was dissolved into the GO disper-
sion (2 mg mL�1) to form a transparent solution. Then the mixed
solution was sealed into a 100 ml Teflon-lined stainless steel auto-
clave and heated at 180 �C for 12 h. After that, the reaction mixture
was cooled down to room temperature. The obtained cylindrical
was washed repeatedly with distilled water, freeze-dried and cal-
cined at 500 �C for 4 h at 5 �C min�1 in N2 atmosphere to obtain
SnO2 QDs/GA. Bare SnO2 was synthesized by similar method with-
out adding GO. The morphology was obtained by scanning electron
microscopy (FESEM, JSM-7001F) and high-resolution transmission
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Fig. 1. (a) XRD patterns of SnO2 and SnO2 QDs/GA, (b) Raman spectra of GO and SnO2 QDs/GA, (c) TGA curve of SnO2 QDs/GA and (d) BET measurement of SnO2 QDs/GA. The
inset shows pore-size distribution.

Fig. 2. (a-b) SEM images of SnO2 QDs/GA. (c-d) HRTEM images of SnO2 QDs/GA. (e) SEM images of SnO2 QDs/GA and the corresponding elemental mapping images of (f) C, (g)
O, (h) Sn.
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