Accepted Manuscript

Ag₂S quantum dot sensitized Zinc Oxide photoanodes for environment friendly photovoltaic devices

Rama Krishna Chava, Misook Kang

PII:	S0167-577X(17)30621-3
DOI:	http://dx.doi.org/10.1016/j.matlet.2017.04.078
Reference:	MLBLUE 22499
To appear in:	Materials Letters
Received Date:	16 January 2017
Revised Date:	23 March 2017
Accepted Date:	15 April 2017

Please cite this article as: R.K. Chava, M. Kang, Ag₂S quantum dot sensitized Zinc Oxide photoanodes for environment friendly photovoltaic devices, *Materials Letters* (2017), doi: http://dx.doi.org/10.1016/j.matlet. 2017.04.078

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Ag₂S quantum dot sensitized Zinc Oxide photoanodes for environment friendly photovoltaic devices

Rama Krishna Chava*, Misook Kang

Department of Chemistry, College of Sciences, Yeungnam University, Gyeongsan,

Gyeongbuk 38541, Republic of Korea.

Abstract:

Simple and a facile chemical solution strategy was utilized for the synthesis of ZnO nanoparticles (NPs) and then Ag_2S quantum dots (QDs) were deposited on the surface of ZnO NPs by a successive ionic layer adsorption and reaction deposition method. The formation of Ag_2S QDs on ZnO films significantly improved the performance of quantum dot sensitized solar cells (QDSCs). The higher photoconversion efficiency, 2.41% was achieved for the ZnO– Ag_2S 6-cycles photoanode which corresponds to an increase of 35% when compared with bare ZnO electrode. The improved photoconversion efficiency of the ZnO– Ag_2S QDSCs is attributed to the Ag_2S sensitization which broadened the absorption into visible light region and exhibits higher short-circuit current density (J_{sc}) values.

Keywords:

Nanoparticles; Solar energy materials; ZnO films; Ag₂S quantum dot sensitization; SILAR deposition; Photoconversion efficiency.

Corresponding Authors:

Dr. Rama Krishna Chava (Email: <u>drcrkphysics@hotmail.com</u>); Prof. Misook Kang (<u>mskang@ynu.ac.kr</u>): Department of Chemistry, College of Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea,

Download English Version:

https://daneshyari.com/en/article/5463122

Download Persian Version:

https://daneshyari.com/article/5463122

Daneshyari.com