[Materials Letters 194 \(2017\) 238–241](http://dx.doi.org/10.1016/j.matlet.2017.02.060)

Materials Letters

journal homepage: www.elsevier.com/locate/mlblue

Role of oxygen vacancy on the electrical properties of $SnO₂-Zn₂SnO₄$ ceramic composites with the introduction of $Nb₂O₅$ oxide

Guo-Zhong Zang *, Xiao-Fei Wang, Li-Ben Li, Dan-Dan Wang

School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China

article info

Article history: Received 22 December 2016 Received in revised form 8 February 2017 Accepted 18 February 2017 Available online 21 February 2017

Keywords: Electroceramics Varistors Dielectrics Oxygen vacancies

ABSTRACT

In this work, the role of oxygen vacancy on the electrical properties of traditionally prepared SnO₂- Zn_2SnO_4 ceramic composites was evaluated by introducing Nb₂O₅ oxide. With increasing Nb₂O₅ content, the breakdown electric field $E_{1,0}$ and the relative permittivity ε_r measured at low frequencies increased and declined, respectively. In the microstructure photos, the grain size decreased before reaching a saturation point. In addition, Nb was randomly distributed in the grains and along grain boundaries. By doping $Nb₂O₅$, the color of the sintered samples darkened, and F-type color centers were generated. In the complex electric modulus spectra, the peak of the imaginary part $Mⁿ$ shifted toward a lower frequency; whereas, the activation energy E_a changed slightly with increasing Nb_2O_5 content. The results suggest that oxygen vacancy is the origin of the varistor and high permittivity properties of $SnO₂-Zn₂SnO₄$ ceramic composites. Furthermore, the varistor and dielectric properties can be modulated by changes in the microstructure.

2017 Elsevier B.V. All rights reserved.

1. Introduction

Varistors are important electroceramic materials widely applied in electronic and electrical systems [\[1\].](#page--1-0) One kind of varistor, with low breakdown electric field (switch field, $E_{1,0}$, electric field at a current density of 1.0 mA/cm²) and high permittivity, can be used to absorb sparks in electrical micro-machines. In 2005, we found that $SnO₂-Zn₂SnO₄$ ceramic composites have nonlinear currentvoltage properties, characterized by low breakdown voltage and high permittivity $[2]$. Compared with widely studied SrTiO₃ $[3]$, SnO₂-Zn₂SnO₄ ceramic composites have a much simpler preparation process. The following research revealed that the large amounts of weakly-trapped and electrically diffusible charges that exist in the bulk ceramic are important to the origin of the varistor and high permittivity $[4]$. Further studies, through heat-treating the samples in vacuum and at atmosphere, indicated that the charges could be oxygen vacancy-related $[5]$. In ZnO, TiO₂, and $SnO₂$ varistor systems, $Nb₂O₅$ has been adopted as a donor doping species, and it can effectively improve the dielectric permittivity and reduce the breakdown electric fields $[6-8]$. Recently, the parameters of the varistor as well as the high permittivity properties of $SnO₂-Zn₂SnO₄$ ceramic composites have been greatly improved by doping an optimal amount of $SiO₂$ [\[9\]](#page--1-0). In order to

⇑ Corresponding author. E-mail address: zangguozhong@sina.com (G.-Z. Zang). evaluate the role of oxygen vacancy in $SnO₂-Zn₂SnO₄$ ceramic composites, the microstructure and electrical properties were studied in this work by introducing $Nb₂O₅$ to a 0.8 mol SnO₂ + 0.2 mol Zn₂- $SnO₄ + 0.2 mol% SiO₂ composite.$

2. Experimental procedures

Ceramic samples with the following compositions: 0.8 mol $SnO₂ + 0.2$ mol $Zn₂SnO₄ + 0.2$ mol% $SiO₂ + x$ mol% $Nb₂O₅$ (x = 0.05, 0.10, 0.15 and 0.20) were prepared using analytical grade $SnO₂$, ZnO, $SiO₂$ and $Nb₂O₅$. The ceramic preparation process and the electrode fabrication method are similar to that used in our previous study $[9]$. The relationship between current density *I* and applied electric field E was measured using a Keithley 2410 source meter. The relative permittivity spectra (ε_r-f) were measured by Agilent 4294A impedance analyzer in the temperature range of 40–200 \degree C. The microstructure and distribution of elements were analyzed using a scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS), respectively (Zeiss, Merlin Compact).

3. Results and discussion

[Fig. 1](#page-1-0) shows the relative permittivity spectra and breakdown electric field for each composition. Because of the DC conductance loss $[10,11]$, ε_r decreased sharply when the frequency was lower

CrossMark

Fig. 1. Spectra of the relative permittivity ε_r for each sample. The inset shows the variation of the breakdown electric field $E_{1,0}$ with increasing $Nb₂O₅$ content.

than $10⁵$ Hz, whereas it was saturated at high frequencies. With increasing $Nb₂O₅$ content, ε _r decreased at low frequencies, while the saturated ε_r at high frequencies changed slightly. As depicted in the inset of Fig. 1, the breakdown electric field $E_{1,0}$ increased gradually with increasing $Nb₂O₅$ content. Our previous study revealed that ε_r is directly and $E_{1,0}$ is inversely proportional to grain size in $SnO₂-Zn₂SnO₄$ ceramic composites [\[12\]](#page--1-0). Thus, the inverse variations of relative permittivity and breakdown electric field, with increasing $Nb₂O₅$ content, suggested that doping $Nb₂O₅$ would inhibit the grain growth.

Fig. 2 shows the SEM images and distributions of Sn, Zn and Nb elements on the sample surface. As expected, the grain size decreased dramatically with increasing $Nb₂O₅$ content from 0.05 to 0.10 mol%; whereas, no significant decrease was observed by further doping $(x = 0.15, 0.20)$. That is, the grain size did not decrease continuously with increasing $Nb₂O₅$ content. The results are inconsistent with that discussed in Fig. 1 and indicate that the electrical properties may also be affected by other mechanisms besides grain size. From Fig. 2, it was found that the Nb element distributed randomly in the grains and along grain boundaries. That is, Nb had integrated into the $SnO₂$ and $Zn₂SnO₄$ lattices, as described by the following equations:

$$
Nb_2O_5 \xrightarrow{snO_2/Zn_2SnO_4} 2 \left(Nb_{Sn^{4+}}^{5+}\right)^{\text{-}} + 2e^{\prime} + 4O_0 + \frac{1}{2}O_2, \hspace{2.5cm} (1)
$$

$$
Nb_2O_5 \xrightarrow{Zn_2SnO_4} 2 \left(Nb_{Zn^{2+}}^{5+}\right)^{...} + 6e' + 2O_0 + \frac{3}{2}O_2 \hspace{2.5cm} (2)
$$

In SnO₂ varistors, $Nb₂O₅$ or Ta₂O₅ is a necessary donor dopant to improve the conductivity of $SnO₂$ grains, as expressed by Eq. (1) [\[8\]](#page--1-0). As a result, the breakdown electric field would decline and these donors would improve the relative permittivity [\[13,14\].](#page--1-0) Although $Nb₂O₅$ also acts as donor in $SnO₂-Zn₂SnO₄$ ceramic composites, the variations of ε_r and $E_{1,0}$ are in contrast with the results in $SnO₂$ varistors. Thus, it is reasonable to assume that the electrons generated in Eq. (1) or (2) have been captured by some defects. As seen in the bottom right of Fig. 2, the color of the sample without $Nb₂O₅$ doping was ivory white. Conversely the $Nb₂O₅$

Fig. 2. SEM images, distributions of the elements of Sn, Zn, Nb on the sample surface, and an image of as-sintered samples.

Download English Version:

<https://daneshyari.com/en/article/5463356>

Download Persian Version:

<https://daneshyari.com/article/5463356>

[Daneshyari.com](https://daneshyari.com)