Accepted Manuscript

Fabrication of MnO nanowires implanted in graphene as an advanced anode material for sodium-ion batteries

Fei Li, Jingyao Ma, Haijing Ren, Hui Wang, Gang Wang

PII: S0167-577X(17)31042-X

DOI: http://dx.doi.org/10.1016/j.matlet.2017.07.006

Reference: MLBLUE 22848

To appear in: Materials Letters

Received Date: 30 March 2017 Revised Date: 17 June 2017 Accepted Date: 2 July 2017

Please cite this article as: F. Li, J. Ma, H. Ren, H. Wang, G. Wang, Fabrication of MnO nanowires implanted in graphene as an advanced anode material for sodium-ion batteries, *Materials Letters* (2017), doi: http://dx.doi.org/10.1016/j.matlet.2017.07.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fabrication of MnO nanowires implanted in graphene as an advanced anode material for sodium-ion batteries

Fei Li^a, Jingyao Ma^a, Haijing Ren^c, Hui Wang^b, Gang Wang^{a*}

^a Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China

^b College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China

^c Shaanxi Research Design Institute of Petroleum and Chemical Industry, Key Laboratory of Fine

Chemicals Petroleum, Xi'an 710054, P. R. China

*Corresponding author: Tel.: +86 29 88303697; Fax: +86 29 88302571; E-mail address:

gangwang@nwu.edu.cn (G. Wang)

Abstract: MnO nanowires/graphene (MnO/GR) composite is prepared through a simple two-step route, which including a hydrothermal and a subsequent calcination process. Morphology and structure characterizations indicate the successful incorporation of MnO nanowires with GR sheets. The electrochemical performance of the composite as an anode material for sodium-ion batteries (SIBs) was investigated. The results show that the composite could deliver good cycling performance of 191 mAh g⁻¹ at the current density of 50 mA g⁻¹ after 100 cycles together with excellent rate performance by taking the advantages of GR. This work offers promise for the potential application of MnO/GR as an anode for SIBs.

Keywords: MnO nanowires; Graphene; Sodium-ion batteries; Composite materials; Energy storage and conversion

1. Introduction

With the increasingly severe environmental pollution and energy shortage, there has been attracted

Download English Version:

https://daneshyari.com/en/article/5463441

Download Persian Version:

https://daneshyari.com/article/5463441

<u>Daneshyari.com</u>