Accepted Manuscript

Quasi-static Compressive Behavior of the Ex-situ Aluminum-alloy Foam-filled Tubes under Elevated Temperature Conditions

Nima Movahedi, Emanoil Linul

PII: S0167-577X(17)31056-X

DOI: http://dx.doi.org/10.1016/j.matlet.2017.07.018

Reference: MLBLUE 22860

To appear in: *Materials Letters*

Received Date: 17 April 2017 Revised Date: 4 June 2017 Accepted Date: 2 July 2017

Please cite this article as: N. Movahedi, E. Linul, Quasi-static Compressive Behavior of the Ex-situ Aluminum-alloy Foam-filled Tubes under Elevated Temperature Conditions, *Materials Letters* (2017), doi: http://dx.doi.org/10.1016/j.matlet.2017.07.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Quasi-s	static Compressive Behavior of the Ex-situ Aluminum-alloy Foam-filled Tubes under Elevated	1
	Temperature Conditions	2
	Nima Movahedi ^{1*} , Emanoil Linul ^{2*}	3
	¹ Independent Researcher (Graduated from Semnan University), Isfahan, Iran	4
² Politehnio	ca University of Timisoara, Department of Mechanics and Strength of Materials, 1 Mihai Viteazu	5
	Avenue, 300 222 Timisoara, Romania	6
	Corresponding authors: Nima MOVAHEDI, Emanoil LINUL	7
8	Tel. 0040 256 40 3741 / Fax. 0040 256 40 3523	
nima.movahe	edi@gmail.com	9
emanoil.linul@upt.ro		10
		11
Abstract		12
This manuscript focuses on the uniaxial compressive performance of thin walled steel tubes filled with closed-		13
cell aluminum-alloy foam (ex-situ FFTs) at high temperature. For this purpose, the axial compressive behavior		14
of empty tubes, closed-cell aluminum foam, and ex-situ FFTs was evaluated under quasi-static loading		15
conditions at 300°C. The FFTs were compressed according to the concertina mode with the formation of two		16
folds at the tested temperature. Also it was concluded that inserting closed-cell aluminum foam as a filler		17
material inside the empty steel tube improved its energy absorption by 23% at 300°C, as well as reducing crack		18
initiation and propagation in the steel tube.		19
Keywords: Porous Materials; Aluminum foam filled tube; compression test; elevated temperature; cast		20
		21
1. Introduct	ion	22
Multi material structures have become promising candidates for use in the automotive industry in recent years		23
[1]. Aluminum foam (AFs) containing composites have gained a lot of attention in recent years. Bakir et al		24
produced a three layer sandwich composite with Aluminum foam sheets for energy absorption applications [2].		25
Duarte et al [3] manufactured thin walled aluminum tubes filled with Aluminum foam, and observed that the		26
presence of foam as filler in empty tubes resulted in better mechanical properties and energy absorption		27
capability. Taherishargh et al [4] studied the bending behavior of in situ perlite syntactic Aluminum foam inside		28
aluminum tubes, and concluded that the foam filler improved the energy absorption of the tubes by about 40%		29

Download English Version:

https://daneshyari.com/en/article/5463455

Download Persian Version:

https://daneshyari.com/article/5463455

<u>Daneshyari.com</u>