Author's Accepted Manuscript

Superhydrophobic Surfaces with Excellent Abrasion Resistance Based on Benzoxazine/Mesoporous SiO₂

Zhi Wang, Huibin Zhu, Ni Cao, Ruikui Du, Yaqing Liu, Guizhe Zhao

www.elsevier.com

PII: S0167-577X(16)31604-4

DOI: http://dx.doi.org/10.1016/j.matlet.2016.10.010

Reference: MLBLUE21579

To appear in: *Materials Letters*

Received date: 26 August 2016 Revised date: 29 September 2016 Accepted date: 3 October 2016

Cite this article as: Zhi Wang, Huibin Zhu, Ni Cao, Ruikui Du, Yaqing Liu and Guizhe Zhao, Superhydrophobic Surfaces with Excellent Abrasion Resistance Based on Benzoxazine/Mesoporous SiO₂, *Materials Letters* http://dx.doi.org/10.1016/j.matlet.2016.10.010

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Superhydrophobic Surfaces with Excellent Abrasion Resistance Based on

Benzoxazine/Mesoporous SiO₂

Zhi Wang*, Huibin Zhu, Ni Cao, Ruikui Du, Yaqing Liu, Guizhe Zhao Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China

*Corresponding author: Tel.: +008613934512913. shikouri@163.com

Abstract

Superhydrophobic surfaces with excellent abrasion resistance were obtained by the spraying method using benzoxazine/mesoporous SiO₂. Based on microstructural and nanostructural materials with low surface energy, the surfaces formed when the mesoporous SiO₂ content reached more than 15%. Relying on the re-entrant features of bulk materials, the self-similar structure of additive and an "organic-inorganic" interpenetrating network, the superhydrophobicity property was maintained after over 400 cm of abrasion at 1.6 kPa, which surpassed that of benzoxazine/nano SiO₂ system. The findings concerning mesoporous particles and benzoxazines are conducive to future development of robust superhydrophobic coating technology.

Keywords: superhydrophobic; benzoxazine; abrasion resistance; surfaces; organic-inorganic interpenetrating networks; microstructure

1. Introduction

Superhydrophobic surfaces have attracted considerable attention recently because of numerous practical applications, such as self-cleaning, metal refining and adhesion prevention [1-3]. In general, the superhydrophobic surfaces can be achieved by a combination of low surface energy and morphological structures [4, 5]. However, most superhydrophobic surfaces are vulnerable to mechanical damages because fragile micro-/nano-hierarchical structures are easily destroyable even after finger touch [6]. The robustness of superhydrophobic surfaces has been enhanced by

Download English Version:

https://daneshyari.com/en/article/5463739

Download Persian Version:

https://daneshyari.com/article/5463739

<u>Daneshyari.com</u>