## Accepted Manuscript

Synthesis of quaternary  $\text{Cu}_2\text{NiSnS}_4$  thin films as a solar energy material prepared through «Spray» technique

S. Dridi, N. Bitri, M. Abaab

PII: S0167-577X(17)30910-2

DOI: http://dx.doi.org/10.1016/j.matlet.2017.06.028

Reference: MLBLUE 22740

To appear in: *Materials Letters* 

Received Date: 15 April 2017 Revised Date: 2 June 2017 Accepted Date: 5 June 2017



Please cite this article as: S. Dridi, N. Bitri, M. Abaab, Synthesis of quaternary Cu<sub>2</sub>NiSnS<sub>4</sub> thin films as a solar energy material prepared through «Spray» technique, *Materials Letters* (2017), doi: http://dx.doi.org/10.1016/j.matlet.2017.06.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## CCEPTED MANUSCRIPT

Synthesis of quaternary Cu<sub>2</sub>NiSnS<sub>4</sub> thin films as a solar energy material prepared through « Spray » technique

S. Dridi<sup>1</sup>, N. Bitri<sup>1\*</sup> and M. Abaab<sup>1</sup>

<sup>1</sup>Université de Tunis El Manar, Ecole Nationale d'Ingénieurs de Tunis, Laboratoire de Photovoltaïque et matériaux semiconducteurs, 1002, Tunis, Tunisie.

\* E-mail: nabila.bitri@gmail.com

Abstract

Cu<sub>2</sub>NiSnS<sub>4</sub> (CNTS) is considered as a promising quaternary semiconductor, suitable for absorber layer in

thin film solar cells because of their non toxic and earth-abundant elements. Here, we have successfully

deposited CNTS thin films onto glass substrates by the Spray Sandwich method. These thin films were

only obtained at substrate temperature 300 °C with 60 min spray duration. The prepared CNTS thin films

exhibited high absorption coefficient (~10<sup>4</sup> cm<sup>-1</sup>) in the visible region with direct band gap energy of 1.23

eV, suggesting its potential use in thin film solar cells.

**Keywords:** Thin films, Cu<sub>2</sub>NiSnS<sub>4</sub>, Solar energy material, Spray Sandwich.

1. Introduction

Recently, quaternary chalcogenide semiconductors Cu<sub>2</sub>XSnS<sub>4</sub> (X= Ni, Zn, Co, Mn, Fe) have

drawn a lot of attention as an absorber for applications in thin-film solar cell devices because of excellent

optical, electrical and chemical properties. Among them, Cu<sub>2</sub>NiSnS<sub>4</sub> (CNTS) thin film is considered as

one of the promising candidates for low-cost thin films solar cells. Indeed, this semiconductor exhibits

suitable band gap energy of 1.1-1.5 eV and high absorption coefficient about (~10<sup>4</sup> cm<sup>-1</sup>) [1]. There are

few reports concerning the preparation of CNTS based thin films. Yang et al. synthesized CNTS thin

films with a stannite structure by a facile one-step electro-deposition method followed by the annealing

treatment which realized in H<sub>2</sub>S/N<sub>2</sub> mixed at atmosphere [2]. Chen et al. fabricated CNTS thin films with

a cubic structure using an electro-deposition method followed by sulfurization at high temperature [3].

Based on CNTS thin films, only electro-deposition method has been used.

We report, for the first time, the fabrication of cubic CNTS thin films using a Spray Sandwich

method without any annealing treatment. In fact, the Spray Sandwich method is an advanced chemical

1

## Download English Version:

## https://daneshyari.com/en/article/5463787

Download Persian Version:

https://daneshyari.com/article/5463787

Daneshyari.com