Accepted Manuscript

Facile synthesis of $Co_3O_4@MnO_2$ core–shell nanocomposites for high-performance supercapacitor

Lv Jinlong, Yang Meng, Liang Tongxiang, Hideo Miura

PII:	S0167-577X(17)30472-X
DOI:	http://dx.doi.org/10.1016/j.matlet.2017.03.127
Reference:	MLBLUE 22366
To appear in:	Materials Letters
Received Date:	24 January 2017
Revised Date:	23 February 2017
Accepted Date:	22 March 2017

Please cite this article as: L. Jinlong, Y. Meng, L. Tongxiang, H. Miura, Facile synthesis of Co₃O₄@MnO₂ coreshell nanocomposites for high-performance supercapacitor, *Materials Letters* (2017), doi: http://dx.doi.org/10.1016/ j.matlet.2017.03.127

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Facile synthesis of Co₃O₄@MnO₂ core-shell nanocomposites for

high-performance supercapacitor

Lv Jinlong^a, Yang Meng^a, Liang Tongxiang^b Hideo Miura^a

^aFracture and Reliability Research Institute, School of Engineering, Tohoku University, Sendai 9808579, Japan

^bSchool of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, China

Abstract: $Co_3O_4@MnO_2$ core-shell arrays hybrid electrode directly grown on Ni foam for supercapacitor was obtained by two-step hydrothermal processes. $Co_3O_4@MnO_2$ core-shell arrays hybrid electrode exhibited a high specific capacitance of 1920 F g⁻¹ at current density of 1 A g⁻¹. This was attributed to relative high conductivity of the Co_3O_4 nanowire arrays and the large surface area provided by the ultrathin MnO_2 nanosheets. The porous MnO_2 nanosheets stack provided numerous channels for rapid diffusion of electrolyte ions and fast electron transport, which enhanced the electrochemical reactions. The synergetic effect between Co_3O_4 nanowire and MnO_2 nanosheets also improved the supercapacitor performance. In addition, the $Co_3O_4@MnO_2$ core-shell arrangement also exhibited excellent cyclic stability.

Keywords: Co₃O₄ nanowires; MnO₂ nanosheets; Hydrothermal; Supercapacitors; Microstructures

* Corresponding author. Tel.: +86 10 89796090; fax: +86 10 69771464.

e-mail address: ljltsinghua@126.com

Download English Version:

https://daneshyari.com/en/article/5463859

Download Persian Version:

https://daneshyari.com/article/5463859

Daneshyari.com