ELSEVIER

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/mlblue

Aptamer-modified CuS nanocrystals/graphene oxide composites for controlled release of glucosamine and chemo-photothermal therapy of tumor cells

Ziqing Xu^{a,b,1}, Shicheng Wu^{c,1}, Guicheng Huang^{a,*}, Hongwei Ding^b, Rijun Gui^{d,*}, Baohua Zhu^b

- ^a Nanjing University of Chinese Medicine, Nanjing 210023, PR China
- ^b The Second Traditional Chinese Medicine Hospital of Jiangsu Province, Nanjing 210017, PR China
- ^c Traditional Chinese Medicine Hospital of Kunshan, Kunshan 215300, PR China
- ^d College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China

ARTICLE INFO

Article history: Received 31 October 2016 Received in revised form 22 January 2017 Accepted 26 February 2017 Available online 28 February 2017

Keywords:
Graphene oxide
Composite materials
Biomaterials
Functional
Glucosamine

ABSTRACT

In this paper, citrate-stabilized CuS nanocrystals were modified by NH₂-terminated aptamer of carcinoembryonic antigen to fabricate aptamer-CuS complex via carbodiimide-activated coupling. Then, the complex was conjugated with graphene oxide (GO) to form aptamer-CuS/GO conjugates via π - π stacking interactions. Finally, glucosamine (Glu) was loaded into aptamer-CuS/GO conjugates to prepare aptamer-CuS/GO/Glu composites. The composites enabled CEA-targeted and pH-sensitive Glu release. Under near-infrared light irradiation at 980 nm, the composites had photothermal-accelerated release of Glu and chemo-photothermal synergistic therapy in vitro. Due to combined advantages from tumor biomarker-targeted, pH-sensitive, photothermal-accelerated drug release, as well as chemo-photothermal therapy, the composites could be developed towards multifunctional drug-delivery systems for highly efficient treatment against tumor cells.

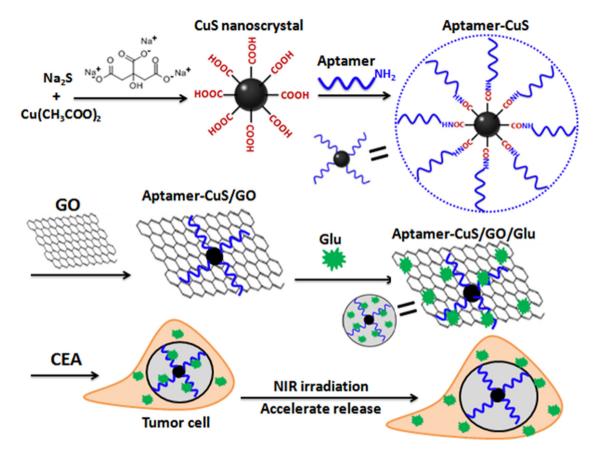
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As an amino monosaccharide, glucosamine (Glu) has been widely used as alternative treatment for rheumatoid arthritis and osteoarthritis [1]. As established, Glu is extensively taken as a dietary supplement to relieve discomfort of osteoarthritis-related joint pain and is used as a prescription drug to achieve cartilage protective effects in knee osteoarthritis [2]. Significantly, Glu was first reported as an inhibitor of tumor growth by Quastel and Cantero [3]. Afterward, many researches on Glu-dominated tumor therapy *in vitro* and *in vivo* have been reported in succession [1–8]. Anticancer actions of Glu are mainly relative to uracil and adenine nucleotide contents, structural and functional disruption in cellular membrane, inhibition of protein, RNA and DNA synthesis [2]. Glu in a certain concentration could kill tumor cells without influence on normal cells [9], and therefore it is meaningful to develop Glucarrying systems for drug delivery and tumor therapy.

In previous reports, Glu-carrying polymeric nanoparticles and microgels were prepared and used for drug release studies

[10,11]. To improve the efficiency of tumor therapy, it is significant to introduce the characteristics of tumor biomarker-targeted delivery and synergistic therapy in Glu-carrying systems. Herein, a novel Glu-carrying system (in Scheme 1) was facilely prepared *via* non-covalent intercalation and π - π stacking. The system consisted of CuS nanocrystals (NCs), aptamer of carcinoembryonic antigen (CEA) and graphene oxide (GO). After loading of Glu, versatile composites of aptamer-CuS/GO/Glu were achieved. Due to the excellent photothermal effect of CuS NCs under near-infrared (NIR) light irradiation, tumor biomarker CEA-targeting and the larger adsorption of GO to Glu, the composites exhibited a great potential in tumor treatment, especially serving as a versatile Glu-carrying system for CEA-targeted, pH-sensitive, photothermal-accelerated Glu release, and chemo-photothermal synergistic therapy. So far, there is no report referring to simultaneous tumor-targeted Glu release and chemo-photothermal synergistic therapy in Glucarrying systems.


2. Material and methods

Citrate-stabilized CuS NCs were prepared based on the reported methods (Part S1) [12,13]. GO was prepared from purified natural graphite powder based on a modified Hummer's method [14]. CuS

^{*} Corresponding authors.

E-mail addresses: 635775299@qq.com (G. Huang), gui8078@126.com (R. Gui).

¹ Two authors have the equivalent contribution to this work.

Scheme 1. Schematic illustration of the preparation and drug release of aptamer-CuS/GO/Glu composites.

NCs were combined with NH₂-terminated aptamer of CEA to form aptamer-CuS complex, followed by continuous conjugation with GO to form aptamer-CuS/GO conjugates. In aqueous suspension of the conjugates, Glu was added to form the composites of aptamer-CuS/GO/Glu (Part S2).

Transmission electron microscope (TEM) images were acquired with a JEOL JEM-1400 TEM, operating at 120 kV of acceleration voltage. UV-vis-NIR absorption spectra were recorded on a UV-2450 spectrophotometer. Raman spectra were measured by a Horiba spectrometer, equipped with a $10 \times$ objective lens with 90 s of acquisition time. Zeta potential was measured by a dynamic light scattering apparatus. Cytotoxicity assays were conducted according to a standard MTT method (Part S3) [15]. A 980 nm laser (0.5 W) as a selected NIR light was utilized to irradiate samples to induce photothermal effect. In sample aqueous suspension, temperature was recorded by thermocouple and Glu concentration [Glu] was measured with high-performance liquid chromatography [16].

3. Results and discussion

In Fig. 1(a), TEM images of the as-prepared CuS NCs show nearly monodisperse particles with regular and spherical morphology. The average diameter is approximately \sim 8.5 nm. Characteristic flat and wrinkled sheets-like intrinsic shape of GO were observed in Fig. 1(b). After carbodiimide-activated coupling, citrate-stabilized CuS NCs were conjugated with NH₂-terminated CEA aptamer to form aptamer-CuS complex. Under π - π stacking interaction, aptamer-CuS complex was attached on GO to form aptamer-CuS/GO conjugates [17]. Compared with Fig. 1(a and b), Fig. 1(c) shows

monodisperse distribution of spherical CuS NCs on GO, indicating formation of aptamer-CuS/GO conjugates. In Fig. 1(d), UV-vis spectra of GO have an optical absorption peaked at \sim 235 nm, originating from π -plasmon of carbon. The absorption peak maintains almost unchanged in UV-vis-NIR spectra of aptamer-CuS/GO conjugates. Notably, a weak transverse plasmon band at \sim 600 nm and a strong longitudinal surface plasmon band over 1000 nm are observable, attributed to the presence of CuS NCs [12]. Raman spectra were used to characterize carbon structure of GO before and after conjugation with aptamer-CuS complex. In Fig. 1(e), the D band of GO at \sim 1345 cm⁻¹ is usually assigned to local defects or disorders, while the G band at $\sim 1590 \, \text{cm}^{-1}$ is mainly due to sp² graphitized structure [18]. Compared to GO, Raman peak positions and intensities of aptamer-CuS/GO conjugates hardly any change, implying a negligible influence from aptamer-CuS complex on GO.

In Fig. 1(f), aptamer-CuS complex has an average Zeta potential of -7.6 mV, which is from negatively charged feature of CEA aptamer [19,20]. When attached on GO, average Zeta potential of aptamer-CuS/GO conjugates reached to -11.5 mV, attributed to substantial carboxyl and hydroxyl on GO [17,18]. Under electrostatic interaction, positively charged Glu was loaded to form aptamer-CuS/GO/Glu composites, together with a decreased average Zeta potential (-3.2 mV). Continuous exposure of aptamer-CuS/GO aqueous suspension to a NIR light irradiation (980 nm, 0.5 W) for 5 min induced a rapid temperature elevation from 20.0 to 47.3 °C (Fig. 1(g)). It is a unique feature of CuS NCs-carrying systems for controllable drug delivery and photothermal ablation therapy to tumors [21]. Using phosphate buffer solution (PBS) and HeLa cells-cultured medium as the control, negligible temperature increases (<5 °C) were detected under the same

Download English Version:

https://daneshyari.com/en/article/5463928

Download Persian Version:

https://daneshyari.com/article/5463928

Daneshyari.com