Author's Accepted Manuscript

Facile synthesis of hierarchical mesoporous NiCo₂O₄ nanoflowers with large specific surface area for high-performance supercapacitors

Kaibing Xu, Jianmao Yang, Shijie Li, Qian Liu, Junqing Hu

www.elsevier.com

PII: S0167-577X(16)31683-4

DOI: http://dx.doi.org/10.1016/j.matlet.2016.10.083

Reference: MLBLUE21653

To appear in: Materials Letters

Received date: 20 September 2016 Revised date: 18 October 2016 Accepted date: 19 October 2016

Cite this article as: Kaibing Xu, Jianmao Yang, Shijie Li, Qian Liu and Junqing Hu, Facile synthesis of hierarchical mesoporous NiCo₂O₄ nanoflowers with larg specific surface area for high-performance supercapacitors, *Materials Letters* http://dx.doi.org/10.1016/j.matlet.2016.10.083

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Facile synthesis of hierarchical mesoporous NiCo₂O₄ nanoflowers with large specific surface area for high-performance supercapacitors

Kaibing Xu^a, Jianmao Yang^a, Shijie Li^{b*}, Qian Liu^{d*}, Junqing Hu^c

^a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement, Donghua University, Shanghai, 201620, China.

^b Innovation & Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China.

^c College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

^d Department of Physics, Donghua University, Shanghai 201620, China.

E-mail: lishijie@zjou.edu.cn, qianliu@dhu.edu.cn.

Abstract

Hierarchical mesoporous $NiCo_2O_4$ nanoflowers with large specific surface area have been prepared through a simple, low cost and green method. The electrochemical performances of the $NiCo_2O_4$ electrode materials have been investigated, and the results show that $NiCo_2O_4$ electrode materials exhibited high specific capacitances of 1635 F/g at 2 A/g, low internal resistance ~ 0.24 Ω , and remarkable long-term cycling stability, demonstrating its excellent electrochemical performances for supercapacitors. Such enhanced electrochemical performances and the facile synthetic method of $NiCo_2O_4$ electrode materials can offer great promise in next generation supercapacitor applications.

Key words: porous materials; structural; energy storage and conversion; NiCo₂O₄; large specific surface area; high-performance

1.1 Introduction

Nowadays, supercapacitors, also known as electrochemical capacitors (ECs), are considered as a very attractive candidate for next-generation efficient energy

Download English Version:

https://daneshyari.com/en/article/5464268

Download Persian Version:

https://daneshyari.com/article/5464268

<u>Daneshyari.com</u>