Author's Accepted Manuscript

Novel Wettability of Cu₃SnS₄ (CTS) Surface for Superamphiphilic or Hydrophobicity-Superlipophilic

Yin Chang, Yan Li, Jian Wang, Cheng-wei Wang

www.elsevier.com

PII: S0167-577X(16)31696-2

DOI: http://dx.doi.org/10.1016/j.matlet.2016.10.091

Reference: MLBLUE21661

To appear in: Materials Letters

Received date: 10 July 2016 Revised date: 19 October 2016 Accepted date: 22 October 2016

Cite this article as: Yin Chang, Yan Li, Jian Wang and Cheng-wei Wang, Novel Wettability of Cu_3SnS_4 (CTS) Surface for Superamphiphilic or Hydrophobicity S u p e r l i p o p h i l i c , *Materials* Letters http://dx.doi.org/10.1016/j.matlet.2016.10.091

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Novel Wettability of Cu₃SnS₄ (CTS) Surface for Superamphiphilic or

Hydrophobicity-Superlipophilic

Yin Chang, Yan Li*, Jian Wang, Cheng-wei Wang

Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College

of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China

*Corresponding author. Tel.: +86 13893124286. E-mail address: liyan-nwnu@163.com (Y. Li)

Abstract:

Novel surface wettability of superamphiphilic or hydrophobicity-superlipophilic has been firstly

realized on I-IV-VI p-type ternary Cu₃SnS₄ (CTS) thin films, which were deposited on glass substrates

by simple spin-coating method using nontoxic chemicals. The surface wettability varied with the

annealing temperature, and showed superamphiphilic with contact angle of < 1° under 500°C treatment.

Being modified with stearic acid, the surface turned hydrophobicity (contact angle of $109 \pm 2^{\circ}$) but

superlipophilicity (contact angle of < 1°), which means a change of surface wettablity, and the surface

can recover to its initial superamphiphilic state once remove the modification. The surface wettability

could be mainly ascribed to character of material and surface microstructure. Such surface wettability

of CTS is promising in designing new technologies to novel applications in moisture or in dusty

environment, and can also be expected in assisting water-oil separation in future researches.

Keywords: ternary compound; novel surface wettability

1. Introduction

Inspired by the amazing superhydrophobic behaviors of natural lotus leaves and other such objects,

researches on surface wettability have attracted great interest for their potential applications [1,2] in

self-cleaning, anti-fouling, anti-fogging, corrosion protection, drag reduction, microfluidic devices and

intelligent membranes. To achieve a satisfactory surface wettability, methods of constructing material

components, designing surface micro/nano-structures or regulating the surface energy have been

developed to fabricate the films [3]. In research fields of photovoltaic and catalysis, higher

light-harvesting efficiency and larger photoactive contact area are key factors that affect the conversion

efficiency, especially in the complicated application conditions or environments for the devices and the

photocatalyst. Thus, to meet the demand of deeper practical application, it is essential for

light-sensitive layer to have a satisfied surface wettability in special circumstances, such as moisture,

1

Download English Version:

https://daneshyari.com/en/article/5464277

Download Persian Version:

https://daneshyari.com/article/5464277

<u>Daneshyari.com</u>