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- ; tion. This review article aims to provide a comprehensive review of recent progress in
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VCM in different thin films. We first present a brief summary of the modulation of mag-
netism by electric fields and describe its discovery, development, classification, mecha-
nism, and potential applications. In the second part, we focus on the classification of
> . VCM from the viewpoint of materials, where both the magnetic medium and dielectric gat-
Electrical control of magnetism . . .. . . . .
Magnetoelectric coupling ing materlals, and l.ZhEII‘ influences on magnet{c n.mdulatlo.n efﬁc1'en'cy are systematically
MRAM described. In the third part, the nature of VCM is discussed in detail, including the conven-
Spintronics tional mechanisms of charge, strain, and exchange coupling at the interfaces of
heterostructures, as well as the emergent models of orbital reconstruction and electro-
chemical effect. The fourth part mainly illustrates the typical performance characteristics
of VCM, and discusses, in particular, its promising application for reducing power con-
sumption and realizing high-density memory in several device configurations. The present
review concludes with a discussion of the challenges and future prospects of VCM, which
will inspire more in-depth research and advance the practical applications of this field.
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1. Introduction

The control of magnetism and spin phenomena, which corresponds to switching between the basic “0” and “1” signals in
information technology, has been intensely pursued during the past few decades [1-4]. It has generally been accepted that a
magnetic field is the only means to switch magnetization and to maintain unchanged the magnetic behaviors of magnetic
materials once they have been prepared [4]. The use of cumbersome magnets or coils occupies a large amount of space and
entails serious energy consumption, especially when taking the remarkable trend in miniaturization of magneto-electronics
into account [4-6]. Thus, there is a pressing need to employ nonmagnetic means to switch and modulate magnetism. Com-
pared with other nonmagnetic routes, such as strain, doping, current, and light, a voltage has been proven to be able to
manipulate magnetism with a combination of advantages, including low power dissipation, reversibility, nonvolatility, high
speed, and good compatibility with the conventional semiconductor industry [7-13].

In fact, Maxwell’s equations first reveal that the two independent phenomena of magnetic interaction and electric charge
motion are intrinsically coupled to each other [14]. The thought of utilizing electric fields to control magnetism could date
back to the 1960s [15]. In 2000, Ohno et al. [16] demonstrated the tuning of saturated magnetization and Curie temperature
by an electric field in a diluted magnetic semiconductor (In,Mn)As. A large number of experimental works and theoretical
investigations on the modulation and switching of magnetism have emerged in recent years, driven both by an urge to
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