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developing novel SMAs is a clear perception of the deformation physics underlying their
extraordinary shape recoverability. To that end, modern atomistic simulation tools have
proffered state-of-the-art models, which usher in new clarifications for SMA deformation
properties. It was found, for example, that ab initio energy pathways are at the core of dic-
tating the extent of shear and shuffle for both phase transformation and variant formation
at atomic lengthscale. These important revelations are accomplished by addressing inher-
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Phase reversibility ent solid-state effects, which underpin the natural tendency to seek the energetic ground
Density functional theory state. Moreover, empirical potential based models, benefitting from ab initio calculations,
Molecular dynamics have allowed an atomic-resolution view into the phase evolution and the concurrent twin-

ning phenomena relating directly to constitutive properties. Here, we revisit salient exam-
ples of these cutting-edge theoretical discoveries regarding SMA deformation along with
discussions on pertinent experimental evidences.
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1. Background
1.1. Perspective on SMA literature

Nowadays shape memory alloys are finding diversified applications in a wide array of industries (e.g. biomedical,
aerospace, automotive) owing to their extraordinary deformation recoverability [1-3]. The mechanical healing ability of
an SMA-made component (e.g. a cardiovascular stent) is principally rooted upon reversible martensitic transformations at
microstructural level [4]. Deformation micro-mechanisms, however, could be rather complex, involving internal twinning,
precipitation, intermediate phase nucleation, etc. [5-8]. Variables across multiple spatial scales (ranging from sub-
nanometer quantum forces within a single grain to micron-level multi-grain interactions) collectively contribute to the
overall inter-crystal transformability. Given their technological importance, predicting SMA behavior remains a dedicated
discipline, currently employing theoretical tools spanning atomistics to continuum [9,10]. This article provides an overview
of the atomic lengthscale mechanisms pertaining to molecular dynamics and density functional theory studies. More discus-
sions follow on these two approaches. Fig. 1 puts the current topics into perspective.

The extent of SMA research, both experimental and theoretical, is vast. It is instructive to categorize them lengthscale-
wise, as illustrated by Fig. 2, to develop a proper perspective. It follows that the majority of studies concerns continuum scale
behaviors, namely, thermodynamics [11], constitutive modeling [12-14], finite element simulations [15-18]; experimen-
tally, thermo-mechanical characterizations and component performance assessment remain the primary emphases
[19,20]. At the mesoscale (i.e. grain level), digital image correlation (for measuring strain localizations [21,22]), X-ray diffrac-
tion (for phase identification [23-25]), electron microscopy (for studying microscopic defects [26]) and electron backscatter
diffraction (for texture determination [27]) are the common experimental techniques for microstructure characterization.
On the other hand, theorization of mesoscale variables (e.g. roles of grain size, texture, precipitates) is approached commonly
with phenomenological assumptions [28-32]. Such models are tied back-to-back with empirical observations from which
are extracted the requisite material constants i.e. the fitting parameters essential for accurate prediction of macroscale con-
stitutive responses [33]. Phase field models consider the evolution of the martensitic phase in terms of free energy function-
als [34-36] (per the Ginzburg-Landau theory [37]). The advent of molecular dynamics [38] in the SMA context is a recent
development (over last decade) as a promising mesoscopic tool, capable of addressing sub-micron phenomena within a sin-
gle grain. The quantum lengthscale tools include density functional theory based predictions of sub-nanometer physics [39],
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