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Article history: Living organisms have ingeniously evolved functional gradients and heterogeneities to cre-
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Received in revised form 25 October 2016 compounds during long-term evolution and selection. The translation of such design
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Available online 25 April 2017 motifs into synthetic materials offers a spectrum of feasible pathways towards unprece-

dented properties and functionalities that are favorable for practical uses in a variety of
engineering and medical fields. Here, we review the basic design forms and principles of

Ié?a’ ;V;;:isf naturally-occurring gradients in biological materials and discuss the functions and benefits
Heterogeneity thgt th_ey confer to o_rganisms. TI_le;e gradien_ts are fundamentally associated.w_ith Fhe vari-
Biological materials ations in local chemical compositions/constituents and structural characteristics involved
Bioinspiration in the arrangement, distribution, dimensions and orientations of the building units. The
Functionally graded materials associated interfaces in biological materials invariably demonstrate localized gradients

and a variety of gradients are generally integrated over multiple length-scales within the
same material. The bioinspired design and applications of synthetic functionally graded
materials that mimic their natural paradigms are revisited and the emerging processing
techniques needed to replicate the biological gradients are described. It is expected that
in the future bioinspired gradients and heterogeneities will play an increasingly important
role in the development of high-performance materials for more challenging applications.
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1. Introduction

The advancement in modern technologies continues to impose more stringent requirements for engineering materials
with improved mechanical performance; additionally, there is a pressing need for materials to be more energy-efficient
and environmentally-friendly. To address this challenge, there is a continual quest to seek new materials with unprece-
dented combinations of properties and functionalities, such as stiffness, strength, ductility, toughness and formability, with
minimal weight and cost. Unfortunately, many of these properties — prime examples are strength and toughness - tend to be
mutually exclusive within individual materials [1,2]. Consequently, the development of new structural materials is invari-
ably an exercise in compromise; this is particularly the case for the traditional design and fabrication strategies which pri-
marily result in homogeneous materials with relatively uniform composition and microstructure, despite the fact that many
practical applications encompass heterogeneous states of stress, strain and temperature.

A rational solution to this problem is to adapt the local properties of materials to fit their specific requirements, by locat-
ing optimized compositions and architectures in appropriate regions, thereby generating multiple advantages within a single
material to create improved global properties. For instance, the mechanical performance of structural materials can be intel-
ligently enhanced by designing superior strength and ductility in those regions experiencing the highest levels of stress and
strain, respectively [3-5]. In such a scenario, materials can be made to demonstrate site-specific attributes, e.g., composition,
architecture and resulting properties, through the inclusion of varying degrees of heterogeneities or gradients. The term
“gradient” is employed here in its broad sense to describe the non-uniform nature of materials, frequently near surfaces
or internal interfaces, as opposed to a strict homogeneity; it also represents gradual transitions, rather than abrupt changes,
between dissimilar nano-/micro-structural features. It has long been recognized that the introduction of spatial gradients
can effectively enhance the mechanical and functional performance of materials by, for example, alleviating stress concen-
trations or singularities, improving interfacial bonding and enabling new functions [3-10]. Indeed, the creation of gradients,
or more specifically the development of so-called functionally graded materials (FGMs), offers one promising pathway
towards answering the demands for emerging applications of materials.

With respect to such gradients and heterogeneities, Nature provides a rich source of inspiration for the design and fab-
rication of high-performance synthetic materials and components [5,11-18]. Natural (or biological) materials are generally
composites with spatially heterogeneous and tunable properties. These materials have unique characteristics that distin-
guish them from synthetic ones, which have been referred to as the seven features of the Arzt heptahedron (Fig. 1a)
[11,13,16]: (i) self-assembly, (ii) self-healing, (iii) evolutionary and environmental constraints, (iv) importance of hydration,
(v) mild synthesis conditions, mostly at temperatures of ~300 K and pressures of ~1 atm, (vi) multi-functionality, and (vii)
hierarchy of structure at nano-, micro-, meso- and macro-levels. Despite the vast diversity of biological materials, the build-
ing blocks employed by living organisms are limited principally to hard (bio-mineral) and soft (bio-polymer) phases, which
invariably display significantly inferior mechanical properties to many synthetic materials. Nevertheless, natural materials,
such as seashells, fish scales, bone and teeth, can possess extremely impressive combinations of properties far surpassing
those of their constituents; many even outperform their man-made counterparts [11-18]. Such remarkable performance
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