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Article history: The development of functional materials for laser protection is an extremely important

Available online 19 September 2016 research field for the safety and security of users. To achieve simultaneous protection
against both pulsed and continuous wave (cw) or quasi-cw lasers, significant research

Keywords: effort has been invested into state-of-the-art broadband optical limiting (OL) materials

Graphene nanostructures and processes in an attempt to achieve some measure of protection from such laser beams

Graphene-based materials in the past decades. As the first truly two-dimensional material, graphene is being consid-
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ered as an ideal material for modern photonic, optoelectronic and electronic devices
because of its fantastic physical properties. Graphene shows ultrafast carrier relaxation
dynamics and ultra-broadband resonate nonlinear optical (NLO) response due to their
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extended m-conjugate system and the linear dispersion relation holding for their electronic
band structure. Almost all types of graphene-based materials described in this review exhi-
bit strong broadband OL response. The dominant limiting mechanism of graphene is non-
linear scattering, which is very effective in liquid suspensions rather than in solid state
hosts. In contrast to the pure graphene, the solubilized graphene and its derivatives opti-
cally limits through nonlinear absorption mechanism, nonlinear scattering as well as the
photoinduced electron transfer and/or energy transfer between graphene and organic/
polymeric species. This review describes systematically the OL mechanisms and the recent
achievements on the graphene-based functional materials (i.e., graphene nanostructures,
graphene composites, and covalently modified graphene) for OL applications. The future
major ongoing areas of effort have also been suggested.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the coming out of the first operational laser (light amplification by stimulated emission of radiation) in 1960 [1],
new and improved laser technology for both civilian and military purposes has continued to be at the forefront of research
activities over the world. Light from a laser source may be continuous or pulsed. Continuous laser light may possess power
from 0.001 W to thousands of watts. Pulsed lasers may reach energy levels of up to millions of watts per fraction of a second.
Because lasers are coherent, monochromatic and travel in only one direction, they are uniquely adapted for numerous
important applications such as presentation pointers, medical cosmetology, sighting, scanning and ranging devices, materi-
als forming and processing, surgery operation, laser weapons, laser guidance, and law enforcement as well. Aside from their
numerous civilian applications, on the other hand, lasers have evolved into numerous modern battlefield weapons. Some are
designed to dazzle or permanently disable humans by blinding, while others are used to destroy optical sensors, missiles,
and other targets. A laser beam can be focused to an intensity on the retina which may be up to 2 x 10° times higher than
at the point where the laser beam enters the eye. If the energy of a laser beam reaches a high level of intensity within a
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