Accepted Manuscript

Effect of nitrogen partial pressure on microstructure and mechanical properties of Mo-Cu-V-N composite coatings deposited by HIPIMS

Haijuan Mei, Shengsheng Zhao, Zhengtao Wu, Wei Dai, Qimin Wang

PII: S0257-8972(17)30839-3

DOI: doi: 10.1016/j.surfcoat.2017.08.041

Reference: SCT 22602

To appear in: Surface & Coatings Technology

Received date: 20 May 2017 Revised date: 28 July 2017 Accepted date: 17 August 2017

Please cite this article as: Haijuan Mei, Shengsheng Zhao, Zhengtao Wu, Wei Dai, Qimin Wang, Effect of nitrogen partial pressure on microstructure and mechanical properties of Mo-Cu-V-N composite coatings deposited by HIPIMS, *Surface & Coatings Technology* (2017), doi: 10.1016/j.surfcoat.2017.08.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of nitrogen partial pressure on microstructure and mechanical

properties of Mo-Cu-V-N composite coatings deposited by HIPIMS

Haijuan Mei ^a, Shengsheng Zhao ^b, Zhengtao Wu ^a, Wei Dai ^{a,*}, Qimin Wang ^{a,*}

^aSchool of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006,

China

^bSchool of Mechanical and Electrical Engineering, Shenzhen Polytechnic, Shenzhen 518055, China

*Corresponding author: qmwang@gdut.edu.cn (Qimin Wa ng);

popdw@126.com (Wei Dai).

Abstract: The Mo-Cu-V-N composite coatings were deposited by high power impulse magnetron

sputtering (HIPIMS) using a single Mo-Cu-V spliced target in an Ar-N2 atmosphere. The effect of

nitrogen partial pressure on the microstructure, mechanical properties and tribological behavior of the

coatings was investigated. The results indicated that the Mo-Cu-V-N composite coatings exhibited

(111), (200) and (220) diffraction peaks of fcc B1-MoN phase, and then the phase structure changed to

hex δ-MoN phase when the N2 partial pressure was higher than 0.35 Pa. All the coatings showed a

relatively smooth surface and columnar-type microstructure. As the N₂ partial pressure increased from

0.11 Pa to 0.35 Pa, the hardness showed a slight decrease from 20.6 GPa to 16.4 GPa, which would be

due to the relaxation of residual stress, and then rebounded to 17.1 GPa with the formation of mixed

phases of B1-MoN and δ-MoN. All of the Mo-Cu-V-N composite coatings exhibited a relatively low

friction coefficient of approximately 0.3 and the wear rate was in the small range of $8.9 \times 10^{-17}~\text{m}^3/\text{N} \cdot \text{m}$

to 17.3×10⁻¹⁷ m³/N·m. The formation of mixed lubricious oxides of MoO₃ and V₂O₅ was expected to

account for the excellent tribological properties.

Keywords: Mo-Cu-V-N; HIPIMS; Spliced target; N₂ partial pressure; Tribological properties.

1

Download English Version:

https://daneshyari.com/en/article/5464414

Download Persian Version:

https://daneshyari.com/article/5464414

<u>Daneshyari.com</u>