Accepted Manuscript

Stellite alloy mixture hardfacing via laser cladding for control valve seat sealing surfaces

Yinping Ding, Rong Liu, Jianhua Yao, Qunli Zhang, Liang Wang

PII: S0257-8972(17)30904-0

DOI: doi: 10.1016/j.surfcoat.2017.09.018

Reference: SCT 22656

To appear in: Surface & Coatings Technology

Received date: 21 June 2017 Revised date: 16 August 2017 Accepted date: 7 September 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Please cite this article as: Yinping Ding, Rong Liu, Jianhua Yao, Qunli Zhang, Liang Wang, Stellite alloy mixture hardfacing via laser cladding for control valve seat sealing surfaces,

Surface & Coatings Technology (2017), doi: 10.1016/j.surfcoat.2017.09.018

ACCEPTED MANUSCRIPT

A Stellite alloy mixture hardfacing via laser cladding for control valve seat sealing surfaces

Yinping Ding ^a, Rong Liu ^{a,b}, Jianhua Yao ^{a,*}, Qunli Zhang ^a, Liang Wang ^a
^a Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, No.18
Chaowang Road, Hangzhou 310014, China.

^b Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6

ABSTRACT

A Stellite alloy mixture hardfacing consisting of 70% Stellite 3 and 30% Stellite 21, is created via laser cladding for control valve seat sealing surfaces, aiming at enhancing hardness and wear resistance compared with Stellite 6, and improving cracking in laser cladding compared with Stellite 3. The Stellite alloy mixture hardfacing is made on 316 stainless steel substrate and does not show any cracking in liquid penetrant testing. The microstructure of the hardfacing is analyzed using SEM, EDS and XRD. The hardness, dry sliding wear resistance, cavitation-erosion resistance in NaOH solution and corrosion resistance in morpholine solution at pH 9.5 to simulate the amine environment of boiler feedwater service in power generation plants, are evaluated. The Stellite 6 hardfacing prepared with the same laser process parameters is also analyzed and tested under the same conditions for comparison. The experimental results and real industrial test demonstrate superior performance of the Stellite alloy mixture hardfacing to the Stellite 6 hardfacing for control valve seat sealing application.

Download English Version:

https://daneshyari.com/en/article/5464417

Download Persian Version:

https://daneshyari.com/article/5464417

<u>Daneshyari.com</u>