Accepted Manuscript

In vitro degradation and biomineralization ability of hydroxyapatite coated Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys

Rita Maurya, Abdul Rahim Siddiqui, Kantesh Balani

PII: S0257-8972(17)30630-8

DOI: doi: 10.1016/j.surfcoat.2017.06.027

Reference: SCT 22438

To appear in: Surface & Coatings Technology

Received date: 27 March 2017 Revised date: 18 May 2017 Accepted date: 12 June 2017

Please cite this article as: Rita Maurya, Abdul Rahim Siddiqui, Kantesh Balani, In vitro degradation and biomineralization ability of hydroxyapatite coated Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys, *Surface & Coatings Technology* (2017), doi: 10.1016/j.surfcoat.2017.06.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

In vitro Degradation and Biomineralization Ability of Hydroxyapatite Coated Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn Alloys

Rita Maurya, Abdul Rahim Siddiqui and Kantesh Balani*

^a Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India

Abstract:

A biocompatible coating of hydroxyapatite (HA) has been deposited on novel Mg-9Li-7Al-1Sn (LAT971) and Mg-9Li-5Al-3Sn-1Zn (LATZ9531) alloys to control their corrosion and rapid degradation. HA coating was applied by a simple two-step conversion coating process, where phosphate conversion coating (PCC) is alkali treated to form HA coating. A ~ 34 μm and ~ 26 μm thick coating was observed on LAT971 and LATZ9531 alloys respectively and phase analysis conformed to be HA via X-ray diffraction technique. Potentiodynamic polarization test reveals that the coated LAT971 alloys showed the protection efficiency of ~96 % with the lower corrosion rate of 23 µm/y than the uncoated one (525 µm/y). The HA-coated LATZ9531 alloy showed the protection efficiency of ~12 % with a relatively lower corrosion rate of 567 µm/y than that of uncoated one (647 µm/y). Moreover, the polarization resistance of HA-coated LAT971 and LATZ9531 was measured to be ~113 times and 1.2 times of their uncoated alloys, respectively. Electrochemical impedance spectroscopy (EIS) results showed the lower degradation rate of HAcoated alloys with the higher charge transfer resistance for the coated LAT971 (3.9 M Ω .cm²) and LATZ9531 (1.1 k Ω .cm²) than that of uncoated one (686 Ω .cm² and 204 Ω .cm², respectively). Immersion test in simulated body fluid (SBF) revealed the too fast degradation of the uncoated alloys whereas HA-coated alloys showed a limited degradation with the biomineralization ability. Thus, the limited degradation and biomineralization ability of the HA-coated alloys meets the specific requirement for the biodegradable implants for load bearing applications.

Keywords: Mg-Li alloy; HA coating; Potentiodynamic polarization; Corrosion rate; Electrochemical impedance spectroscopy; Charge transfer resistance.

1

^{*} Corresponding author. E-mail address: kbalani@iitk.ac.in; Ph: +91-512-259-6194.

Download English Version:

https://daneshyari.com/en/article/5464793

Download Persian Version:

https://daneshyari.com/article/5464793

<u>Daneshyari.com</u>