ELSEVIER

Surface & Coatings Technology

journal homepage: www.elsevier.com/locate/surfcoat

Effects of a NiFe co-deposited layer on α -Al₂O₃ formation by oxidation of a β -NiAl alloy

Ali Shaaban ^{a,b,*}, Shigenari Hayashi ^c, Kazuhisa Azumi ^d

^a School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan

^b Surface Protection and Corrosion Control Lab., Central Metallurgical Research and Development Institute (CMRDI), Helwan, Egypt

^c Advanced High Temperature Oxidation Materials Laboratory, Graduate School of Engineering, Hokkaido University, Sapporo, Japan

^d Electronic Materials Chemistry Laboratory, Graduate School of Engineering, Hokkaido University, Sapporo, Japan

ARTICLE INFO

Article history: Received 6 June 2017 Revised 11 July 2017 Accepted in revised form 13 July 2017 Available online 13 July 2017

Keywords: NiAl alloy α -Al₂O₃ Oxidation NiFe co-deposition Oxide scale Spinel oxide

ABSTRACT

Effects of Ni metal, Fe metal or NiFe alloy deposits on the oxidation behavior and oxidation products of a β -NiAl alloy at 1000 °C in air were studied. The surface morphologies of the deposited layers and oxide scales were examined by using field emission scanning electron microscope (FE-SEM) and transmission electron microscopy (TEM). The chemical compositions of the deposited layers were determined before and after oxidation by using energy dispersive X-ray (EDX). The deposited layer and the resultant oxidation products were identified by using X-ray diffractometer (XRD). The chemical composition of the deposited layers was found to affect the morphology of the deposits and the final oxidation products. By oxidation at 1000 °C in air, 0-Al₂O₃ was detected for bare, Ni-coated and Ni-rich coated (Ni17.7 at.%Fe) samples, but was not detected for Fe-coated and Fe-rich coated (Ni72 at.%Fe) samples at all oxidation times. The oxidation mass gain after 100 h on Fe-coated sample was the highest among the coated samples. TEM Cross-sectional images revealed that the grain size of α -Al₂O₃ on both Fe coated and Fe-rich NiFe coated samples were the smallest among the coated samples. XRD and EDX point analysis confirmed the formation of different multilayered oxide scales on oxidized samples, NiO/ NiAl₂O₄/Al₂O₃ on Ni coated, complex spinel Ni(Fe)Al₂O₄/Al₂O₃ on Ni-rich NiFe coated, Fe₂O₃/(Fe, Ni, Al)₂O₃/ α -Al₂O₃ on Fe-rich NiFe coated and Fe₂O₃/ α -Al₂O₃ on Fe-coated samples, respectively. Introducing Fe or Fe-rich NiFe coating layer prior to the oxidation of a NiAl alloy resulted in suppression of θ -Al₂O₃ formation and finer grains of α -Al₂O₃, which accelerated the growth rate of α -Al₂O₃ scale. Up to 72 at.% of Fe in NiFe coating was found to be beneficial as an oxidation pretreatment for NiAl alloys to obtain a better high temperature oxidation resistance.

© 2017 Published by Elsevier B.V.

1. Introduction

Oxidation resistance of alumina-forming alloys is promoted by the formation of stable Al₂O₃ scale in which the diffusion of both oxygen and Al is slowed down. Various kinds of Al₂O₃ phases form on these alloys such as metastable γ -, δ - and θ -Al₂O₃ and stable α -Al₂O₃ phases. Among them α -Al₂O₃ oxide scale provides an excellent protective property because of its thermodynamic stability and slow growth rate [1,2]. However, at lower temperature and/or at the early stages of oxidation, metastable alumina phases form first then transform to stable α -Al₂O₃. Because of the rapid growth rates of metastable alumina phases are higher than that of α -Al₂O₃ by about two orders of magnitude [2–4], direct formation of α -Al₂O₃ or rapid transformation of metastable

E-mail address: shaaban.a.aa@m.titech.ac.jp (A. Shaaban).

alumina to stable α -Al₂O₃ is required to improve the high temperature oxidation resistance.

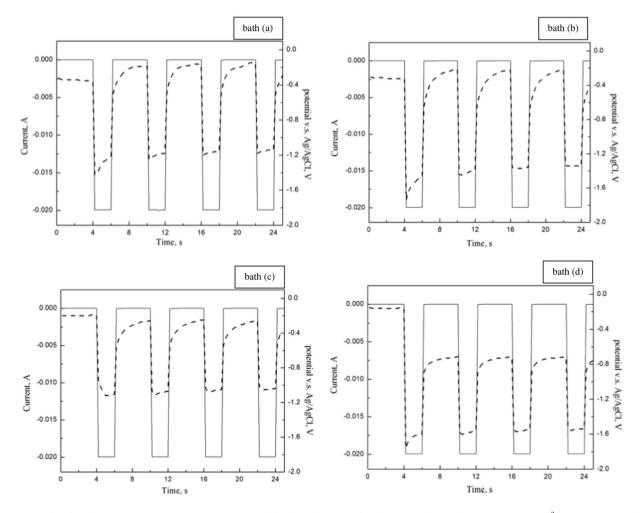
Kitajima et al. reported that the deposition of Cr or Fe coating on Al containing alloys suppressed the formation of metastable θ -Al₂O₃ phase by oxidation at 900 °C in air, while Ni coating delayed the transformation of metastable θ -Al₂O₃ to stable α -Al₂O₃ phase [5]. They proposed that the suppression of the θ -Al₂O₃ formation was caused by rapid formation of α -Al₂O₃ phase. The rapid formation of α -Al₂O₃ was attributed to the formation of coated metal oxides, Cr₂O₃ and Fe₂O₃, which have an isomorphous corundum structure with α -Al₂O₃ scales in the oxidation of β -Ni5OAl alloy at 1000 °C in air and confirmed that metastable Al₂O₃ phase was not formed on NiAl alloy with Fe or Cr coatings [6].

These coatings also affected the growth kinetics of Al_2O_3 scale *via* affecting the size of α -Al₂O₃ grains. The α -Al₂O₃ scale that transformed earlier always consisted of smaller grains, whereas the size of grains

^{*} Corresponding author at: School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan.

composition of electrodeposition but [g uni].							
	Bath	Coating	$[NiSO_4 \cdot 6H_2O]$	$[FeSO_4 \cdot 7H_2O]$	[Na ₂ SO ₄]	$[H_3BO_3]$	H_2SO_4
_	a)	Ni	15.5	0	35, 50	12.5	0
	b)	Ni-Fe	15.5	1.4	35, 50	12.5	0
	c)	Ni-Fe	15.5	27.8	35, 50	12.5	0
	d)	Fe	0	27.8	35	12.5	0.1 M

increased with delay in the transformation from θ -Al₂O₃ to α -Al₂O₃. Generally the growth rate of alumina scale decreases with increasing the size of Al₂O₃ grain. An Fe coating promoted the rapid formation of α -Al₂O₃ as mentioned above resulting in a small grain size. On the other hand Ni coating was found to delay the transformation and thus enlarged the grain size of α -Al₂O₃ reducing the growth rate of oxide scale compared with the Fe or Cr coatings. From the other viewpoint, however, the rapid transformation of θ -Al₂O₃ to α -Al₂O₃ phase is desirable since the shrinkage of the oxide accompanying the transformation causes stresses and thus cracking of the scales particularly in the cyclic oxidation.


A composition of coatings also affects the oxidation kinetics. Ni coating did not suppress the formation of θ -Al₂O₃ phase while Ni-3.1 at.%Fe₂O₃ nano powder composite coating accelerated the transformation of θ - to α -Al₂O₃ phase resulting in an increased grain size of Al₂O₃ and a decreased growth rate of Al₂O₃ scale. Further addition of Fe₂O₃ of 5.2 and 7.4 at.% to Ni coatings suppressed completely the formation of θ -Al₂O₃ phase or promoted direct formation of α -Al₂O₃ phase resulting in a slow growth rate of scales. However, addition of Fe_2O_3 more than 7.4 at.% did not show any improvement because of agglomeration of Fe_2O_3 particles. Therefore, an Fe/Ni ratio in the NiFe coatings is a meaningful parameter because higher ratio of Fe content corresponds to higher concentration of Fe_2O_3 in the oxide that may affect the oxidation behavior.

The purpose of this study is therefore to investigate a suitable Fe/Ni ratio of the NiFe precoating that may improve the oxidation resistance of a NiAl alloy at 1000 °C in air. For this purpose, NiFe alloy coatings were electrodeposited on a NiAl alloy samples *via* pulsed electrodeposition (PED) prior to the oxidation test. Ni and Fe have different electrodeposition rates [8–12] and thus Fe/Ni ratio can be adjusted by controlling the electrodeposition parameters.

2. Materials and methods

A β -Ni50 at.%Al alloy ingot was prepared from Al and Ni metals (~ 99.99% in purity) by using the Ar-arc melting technique followed by homogenization at 1200 °C for 48 h in vacuum (5 × 10⁻³ Pa) and was cut into specimens of *ca.* 1 mm thickness. These specimens were ground with SiC paper up to 4000 grit and finished with 3 µm diamond paste to obtain a mirror finish surface and then ultrasonically degreased in acetone for 10 min.

Ni, NiFe or Fe coating was electrodeposited on the NiAl alloy from different baths adjusted to pH 3 listed in Table 1. The pulsed electrode-position (PED) was conducted by using the following conditions; current density of $i_{cd} = -10 \text{ mA} \cdot \text{cm}^{-2}$, deposition time $t_{on} = 2 \text{ s}$,

Fig. 1. Current waveform for galvanostatic PED and potential response measured for electrodeposition of coatings on Ni50Al samples at $i_{cd} = -10 \text{ mA} \cdot \text{cm}^{-2}$, $t_{on} = 2 \text{ s}$, $t_{off} = 4 \text{ s}$ and $T = 25 ^{\circ}$ C, pH 3, for 600 s in the baths (a)–(d) listed in Table 1 with agitation at 400 rpm.

Download English Version:

https://daneshyari.com/en/article/5464861

Download Persian Version:

https://daneshyari.com/article/5464861

Daneshyari.com