Accepted Manuscript

The composition, structure and surface properties of the titanium-carbon coatings prepared by PVD technique

A.P. Rubshtein, A.B. Vladimirov, Yu.V. Korkh, Yu.S. Ponosov, S.A. Plotnikov

PII: S0257-8972(16)31126-4

DOI: doi: 10.1016/j.surfcoat.2016.11.020

Reference: SCT 21766

To appear in: Surface & Coatings Technology

Received date: 14 July 2016 Revised date: 3 November 2016 Accepted date: 7 November 2016

Please cite this article as: A.P. Rubshtein, A.B. Vladimirov, Yu.V. Korkh, Yu.S. Ponosov, S.A. Plotnikov, The composition, structure and surface properties of the titanium-carbon coatings prepared by PVD technique, *Surface & Coatings Technology* (2016), doi: 10.1016/j.surfcoat.2016.11.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The composition, structure and surface properties of the titanium - carbon coatings prepared by PVD technique

A.P. Rubshtein¹, A.B. Vladimirov¹, Yu.V. Korkh¹, Yu.S. Ponosov^{1,2}, S.A. Plotnikov¹

¹M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences,

Ekaterinburg 620990, Russia

²Ural Federal University named after the first President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia

Abstract

Amorphous carbon (a-C) and titanium-carbon nanocomposite TiC_x/a-C coatings were deposited using the PVD technique. TiC_x/a-C were deposited by simultaneous sputtering of graphite and titanium targets using arc pulse (at the frequency of 3 to 25 Hz) and arc sputtering respectively. The composition, chemical structure and electrical properties of the surface have been studied by energy-dispersive X-ray spectroscopy, Raman spectroscopy and Kelvin probe force microscopy (KPFM). The increase in graphite sputtering arc pulse frequency is accompanied by the growth of carbon content in TiC_x/a-C from 38 to 82 at.% and by the change of phase composition. The incorporation of the Ti⁺ ions into the plasma flow of C⁺ increases the number of sp² bonds in carbon matrix of TiC_x/a-C, as compared to a-C deposited at the same frequency. The maps of contact potential difference (CPD) distribution over the surface of a-C and TiC_x/a-C obtained by KPFM were used to calculate the root-mean-square (RMS) values of CPD. In a-C RMS of CPD decreases with scale up of arc pulse frequency. In TiC_x/a-C RMS of CPD nonlinear depends on the carbon content and reaches maximum at $C_C = 44$ at.%. It has been suggested, that at the contacts of different phases an interface thin layer is formed. The electronic properties of this layer differ from the electronic properties of the bulk phases of nanocomposite. The increase in volume fraction of interface component leads to the drop of RMS of CPD.

Download English Version:

https://daneshyari.com/en/article/5465307

Download Persian Version:

https://daneshyari.com/article/5465307

Daneshyari.com