Accepted Manuscript

Characterization of Cu3SbS3 thin films grown by thermally diffusing Cu2S and Sb2S3 layers

Arshad Hussain, R. Ahmed, N. Ali, A. Shaari, Jing-Ting Luo, Yong Qing Fu

PII: S0257-8972(17)30367-5

DOI: doi: 10.1016/j.surfcoat.2017.04.021

Reference: SCT 22264

To appear in: Surface & Coatings Technology

Received date: 25 January 2017 Revised date: 2 April 2017 Accepted date: 10 April 2017

Please cite this article as: Arshad Hussain, R. Ahmed, N. Ali, A. Shaari, Jing-Ting Luo, Yong Qing Fu, Characterization of Cu3SbS3 thin films grown by thermally diffusing Cu2S and Sb2S3 layers. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Sct(2017), doi: 10.1016/j.surfcoat.2017.04.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Characterization of Cu₃SbS₃ thin films grown by thermally diffusing Cu₂S and Sb₂S₃ layers

Arshad Hussain^{1, 2,*}, R. Ahmed^{1,**}, N. Ali¹, A. Shaari¹, Jing-Ting Luo^{2, 3}, Yong Qing Fu^{2,***}

¹Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor, Malaysia

²Faculty of Engineering & Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK

³ Institute of Thin Film Physics and Application, Shenzhen University, 518060, China

Corresponding authors: *harshad.utm@gmail.com (Arshad Hussain)

** rashidahmed@utm.my (Rashid Ahmed)

*** richard.fu@northumbria.ac.uk (Richard Fu)

Abstract

Copper antimony sulphide (Cu_3SbS_3) with a p-type conductivity and optical band gaps in the range of 1.38 to 1.84 eV is considered to be a promising solar harvesting material with non-toxic and economical elements. In this study, we reported the fabrication of Cu_3SbS_3 thin films using successive thermal evaporation of Cu_2S and Sb_2S_3 layers followed by annealing in an argon atmosphere at a temperature range of 300-375°C. The structural and optical properties of the asdeposited and annealed films were investigated. The annealed films notably show the crystalline phase of the Cu_3SbS_3 , identified from the X-ray diffraction analysis and endorsed by the Raman analysis as well. Whereas their chemical state of the constituent elements was characterized with X-ray photoelectron spectroscopy. The measured highest resistivity of the annealed film was found to be $\sim 0.2~\Omega$ -cm. Hence, our obtained results for the fabricated Cu_3SbS_3 thin films bring to light that Cu_3SbS_3 would be a good absorber layer in solar cells due to their low resistivity, a higher value of the optical absorption coefficient ($\sim 10^5~cm^{-1}$), the low transmittance (< 5%) and an optical direct band gap of 1.6 eV in the visible range of the solar spectrum.

Keywords: Thin films, Copper antimony sulphide, XRD, Optical properties, Resistivity

Download English Version:

https://daneshyari.com/en/article/5465395

Download Persian Version:

https://daneshyari.com/article/5465395

<u>Daneshyari.com</u>