Accepted Manuscript

An investigation on ZrO2 nano-particle incorporation, surface properties and electrochemical corrosion behaviour of PEO coating formed on Cp-Ti

S. Gowtham, S. Hariprasad, T. Arunnellaiappan, N. Rameshbabu

PII: S0257-8972(17)30116-0

DOI: doi: 10.1016/j.surfcoat.2017.01.105

Reference: SCT 22081

To appear in: Surface & Coatings Technology

Received date: 28 November 2016 Revised date: 8 January 2017 Accepted date: 26 January 2017

Please cite this article as: S. Gowtham, S. Hariprasad, T. Arunnellaiappan, N. Rameshbabu, An investigation on ZrO2 nano-particle incorporation, surface properties and electrochemical corrosion behaviour of PEO coating formed on Cp-Ti. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Sct(2017), doi: 10.1016/j.surfcoat.2017.01.105

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

An investigation on ZrO₂ nano-particle incorporation, surface properties and electrochemical corrosion behaviour of PEO coating formed on Cp-Ti

S. Gowtham^a, S. Hariprasad^a, T. Arunnellaiappan^a, N. Rameshbabu^{a,*}

^a Department of Metallurgical and Materials Engineering, National Institute of Technology,

Tiruchirappalli, 620015 Tamil Nadu, India

*Corresponding author: nrb@nitt.edu (or) rameshrohith@gmail.com

Telephone: +91 431-2503464

Fax: +91 431-2500133

Abstract

Plasma Electrolytic Oxidation technique was used to produce nano-sized zirconia incorporated ceramic coating over commercially pure titanium using electrolytes with varying conductivities. Electrolytes with 5 g/l trisodium orthophosphate, 4 g/l monoclinic zirconia nano-particle and varying amount of potassium hydroxide were used. The interrelationship between electrolyte conductivity, particle incorporation, surface features, corrosion behaviour and scratch resistance of the coatings were studied. The phase composition, surface morphology and surface roughness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical profilometer. The electrochemical corrosion behaviour of the samples was analysed from potentiodynamic polarization behaviour, electrochemical impedance spectroscopy and equivalent circuit modelling in a Kokubo 7.4 pH simulated body fluid. The scratch resistance of the coatings was analysed by performing a scratch test using a Rockwell C diamond indenter with progressive loading upto 50 N. The coatings exhibited both inert and reactive incorporation

Download English Version:

https://daneshyari.com/en/article/5465543

Download Persian Version:

 $\underline{https://daneshyari.com/article/5465543}$

Daneshyari.com