Accepted Manuscript

Epitaxial thin film growth of garnet-, GdFeO3-, and YMnO3-type LuFeO3 using pulsed laser deposition

Tsukasa Katayama, Yosuke Hamasaki, Shintaro Yasui, Akiko Miyahara, Mitsuru Itoh

PII:	S0040-6090(17)30680-6
DOI:	doi: 10.1016/j.tsf.2017.09.013
Reference:	TSF 36213
To appear in:	Thin Solid Films
Received date:	7 June 2017
Revised date:	30 August 2017
Accepted date:	8 September 2017

Please cite this article as: Tsukasa Katayama, Yosuke Hamasaki, Shintaro Yasui, Akiko Miyahara, Mitsuru Itoh , Epitaxial thin film growth of garnet-, GdFeO3-, and YMnO3-type LuFeO3 using pulsed laser deposition, *Thin Solid Films* (2017), doi: 10.1016/j.tsf.2017.09.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Epitaxial thin film growth of garnet-, GdFeO₃-, and YMnO₃-type LuFeO₃ using pulsed

laser deposition

Tsukasa Katayama, Yosuke Hamasaki, Shintaro Yasui, Akiko Miyahara, and Mitsuru Itoh*

Laboratory for Materials and Structures, Tokyo Institute of Technology, Midori-ku, Yokohama 226-

8503, Japan

E-mail: itoh.m.aa@m.titech.ac.jp

Abstract

Epitaxial thin-film growth techniques are useful for stabilizing metastable phases and controlling crystal-orientations. Herein, we report the fabrication of LuFeO₃ films using pulsed laser deposition. A garnet-type structure of the film was obtained because of epitaxial stabilization. The garnet-type LuFeO₃ film exhibits ferrimagnetism with a Curie temperature (T_C) of 260 K. This T_C is much lower than that of the Lu₃Fe₅O₁₂ garnet (550 K), as a result of the substitution of nonmagnetic Lu at the octahedral FeO₆ sites. We also fabricated GdFeO₃-type LuFeO₃ epitaxial thin films and controlled the growth orientations of (001) and (011) of the *Pbnm* structure by varying the substrates. The (001)-oriented YMnO₃-type LuFeO₃ film could be stabilized on cubic substrates such as yttria stabilized zirconia (YSZ; (001) and (111)) and MgO (100).

Download English Version:

https://daneshyari.com/en/article/5465713

Download Persian Version:

https://daneshyari.com/article/5465713

Daneshyari.com