Accepted Manuscript

Characterisation of Cu2O/CuO thin films produced by plasmaassisted DC sputtering for solar cell application

Yahya Alajlani, Frank Placido, Hin On Chu, Robert De Bold, Lewis Fleming, Des Gibson

PII:	80040-6090(17)30692-2
DOI:	doi: 10.1016/j.tsf.2017.09.023
Reference:	TSF 36225
To appear in:	Thin Solid Films
Received date:	28 January 2017
Revised date:	7 September 2017
Accepted date:	12 September 2017

Please cite this article as: Yahya Alajlani, Frank Placido, Hin On Chu, Robert De Bold, Lewis Fleming, Des Gibson, Characterisation of Cu2O/CuO thin films produced by plasma-assisted DC sputtering for solar cell application, *Thin Solid Films* (2017), doi: 10.1016/j.tsf.2017.09.023

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Characterisation of Cu₂O/CuO thin films produced by plasma-assisted DC sputtering for solar cell application

Yahya Alajlani^{1, 2}, Frank Placido¹, Hin On Chu¹, Robert De Bold³, Lewis Fleming¹,

Des Gibson¹.

¹Scottish Universities Physics Alliance (SUPA), Institute of Thin Films, Sensors and Imaging, University of the

West of Scotland, UK

²Jazan University, Faculty of Science, Physics Department, Jazan, Suadi Arabia

³Institute for Infrastructure and Environment, School of Engineering, University of Edinburgh, Edinburgh, UK

Abstract

For large-scale implementation of devices magnetron sputtering is a practical method of producing metal oxides, however sputtered copper oxides tend to form as a mixture of Cu_2O , Cu_4O_3 , and CuO, with Cu_2O being particularly difficult to produce reliably in pure form. In this study, nanostructured thin films of Cu_2O , Cu_4O_3 , and CuO were prepared using a novel reactive sputtering system, based on plasma-assisted DC magnetron sputtering with deposition and plasma assisted reaction zones spatially separated enabling separate control of film oxidation. X-ray diffraction, optical spectroscopy, and Raman Spectroscopy were used to characterise the physical and optical properties and it is shown that plasma-assisted DC sputtering is a suitable technique for reliable production of CuO and Cu_2O films in large areas at room temperature without the necessity of further processing. The results also indicate that solar cell performance may relate positively to the presence of crystalline Cu_4O_3 (200) and/or Cu_2O (111) over other crystalline forms of copper oxide or amorphous copper oxide thin films.

Download English Version:

https://daneshyari.com/en/article/5465714

Download Persian Version:

https://daneshyari.com/article/5465714

Daneshyari.com