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A B S T R A C T

The electrical conductance of two kinds of graphene nanoflakes (GNFs) is studied numerically, using non-
equilibrium Green’s function. We perform the calculations on bowtie and rhombus GNFs within the nearest
neighbor tight binding model. Our findings reveal the sensitivity of conductance on the orientation of zigzag
edges. The results show that the conductance of the bowtie and rhombus GNFs could be tuned via enlarging
the system size. Moreover, we obtain different results for conductance of the mentioned GNFs and rectangle
zigzag GNF with the same size.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Since the experimental realization of graphene [1], enormous
scientific and industrial interest arrived due to its promising elec-
trical, optical, thermal, and mechanical properties [2,3]. The gapless
nature of graphene [4] limits its applications in the fabrication of
novel electronic devices. Band gap can be induced and tuned by
several methods such as doping [5], gating [6] and by applying
electric field [7,8]. One common strategy is to create graphene
nanoribbons (GNRs) by cutting a graphene sheet along a certain
direction [9,10]. Due to the existence of a significant number of
atoms at the edges of GNRs, which play an important role in modify-
ing the electronic properties, band gap can be opened up tunably in
GNRs depending on their width and type [11,12]. However, cutting
graphene sheets into GNRs leads to electron mobility degradation,
which limits its performance in devices [13]. GNRs can be classified
in two different groups according to their peripheral shape, which
are named armchair and zigzag graphene nanoribbons (ZGNRs).

In recent years graphene nanoflakes (GNFs), arbitrarily shaped
graphene fragments that are finite in both dimensions, have emerged
as new materials for improving electronic, spintronic, optical and
sensing devices [14]. Mono-layer and multi-layer flakes can be gen-
erated by different techniques [15]. The increasing interest in these
materials is connected with the progress in the fabrication of low-
cost GNF samples, since they exist widely in nature [16], with a
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reasonably high degree of control [17,18]. The aspect ratios of GNFs
(length divided by width) typically is of the order of unity [19], but
in the case of GNRs the aspect ratio in the lateral plane takes value
greater than about 10 [20,21].

The potential applications of GNFs arise from their quantum con-
finement and variation of the edges. This is due to the fact that they
can be cut into a much larger variety of different shapes [22,23].
Shrinking system size to quantum levels, comparable to de Broglie
wavelength of charge carriers, makes the energy levels discrete and
this tunes up the band gap [24]. The quantum size effect in nano-
structures generates novel properties that can hardly be seen in the
bulk, such as the conduction-insulator and nonmagnetic-magnetic
transition of noble nanoscale materials. The extraordinary electronic
and optical properties of such quantum dots attract interest for their
applications in sensors, catalysis, supercapacitors, bioimaging, lumi-
nescence, and spintronic devices [25–28]. In addition to the features
inherited from graphene and GNRs, corner states which are formed
where two edges meet each other, are unique to GNFs [13]. Further-
more, early studies suggest that small GNFs have discrete electronic
structure, which changes to a continuous band structure as their
dimension grows [29]. Therefore, the basic change in the nature
of the electronic level leads to the potential applications of GNFs
from molecular to semi-infinite 2D electronic devices [13]. Several
research teams show that GNF’s electronic and magnetic proper-
ties depend significantly on size, shape, edge geometry, passivation,
stacking, twisting, and terminal functional groups [30–36].

The electronic properties of several highly symmetrical GNF
shapes such as triangular, hexagonal and other polygonal shapes
have been studied [37–40]. Exploring different shapes of GNFs to
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take over the gapless nature of graphene has triggered numerous
studies. In this work, we investigate rhombus and bowtie shape of
GNFs, which are made from triangular shape using non-equilibrium
Green’s function theory. These GNFs are obtained by removing dif-
ferent number of hexagons from a rectangle zigzag GNF (RZGNF)
monolayer. We also check the dependence of transport properties
of both considered nanoflakes on shape and size of the system, and
compare them with a same width and length of RZGNF. Totally, we
try to tune the band gap of the mentioned GNFs by changing their
different features.

We find that, these two types of GNFs with zigzag boundaries
have semiconducting behavior in contrast to the ZGNR which is
always metallic. The semiconducting behavior of the studied GNFs is
expected, since the non-straight zigzag edges play a complex role in
transport mechanism. Quantum confinement and variations of the
edges in rhombus and bowtie GNFs give rise to rich electronic prop-
erties with some exotic phenomena. An interesting point to keep in
mind is that, transmission of RZGNF shrinks by decreasing its aspect
ratio, as predicted by quantum confinement theory.

The remaining sections are organized as follows. In Section 2 we
will briefly describe the NEGF method used for calculation of con-
ductance in GNFs. Section 3 is dedicated to illustrate and discuss
the results from our calculations. Finally, we conclude and give a
summary of our main findings in Section 4.

2. Non-equilibrium Green’s function method

From a mathematical viewpoint, Green’s function is an integral
kernel to solve differential equations with initial or boundary condi-
tions [41]. Non-equilibrium Green’s function (NEGF) method is one of
the best and powerful theoretical methods to study electrical trans-
port in nanostructures [42]. The predicted values by NEGF calcula-
tions are in agreement with what was experimentally observed [43].

In order to mimic a real experiment, we put our nano-device
between two semi-infinite electrodes as charge source and drain, to
calculate its electrical conductance. A schematic view of the system
is depicted in Fig. 1. Here, the systems under consideration are rhom-
bus and bowtie GNFs with different width and length, which we have
cut them from rectangle ZGNFs into these shapes by removing car-
bon atoms. We choose two semi-infinite ZGNRs as left and right leads
connected to central device.

We start from Schrödinger equation for central device:

(E − H)X = f (x), (1)

where E denotes charge carriers energy and X is electronic wave
function. In this case, the wave function can be interpreted as
system’s response to an excitation f(x). Hamiltonian H represents iso-
lated Hamiltonian of device Hdevice, modified by boundary conditions,
which are included in self energy function: H = Hdevice + S. Self
energy contains the interaction of central device with left and right
contacts: S = SL +SR. Hdevice matrix for a device containing N atoms,

Fig. 1. Schematic view of the system consisting of three parts: left lead, central device,
and right lead.

can be written by using a nearest neighbor tight-binding model with
Pz orbital basis set,

Hdevice =
N∑

i=1

(| i > Hi,i < i |) +
∑
<i,j>

(| i > Hi,j < j |), (2)

where Hi,i is the on-site energy, and Hi,j is the hopping energy
between nearest neighbor lattice points i and j. |i > shows the state
vector of i-th site in the device, and

∑
<i,j> refers to a sum over

the nearest-neighbor sites. In zero-bias voltages, the value of on-
site energy and hopping energy are chosen to be zero and 2.7 eV,
respectively.

The corresponding retarded Green’s matrix, Gr, of the central
device can be obtained by solving the equation

[(E + ig)I − H] Gr = I. (3)

The energy, E, is measured with respect to the Fermi energy, EF, and
ig is an arbitrary infinitesimal imaginary number added to energy for
ensuring convergence of the above equation. I and H denote identity
matrix and Hamiltonian of central device, respectively. Thus Gr has a
well-known form [44,45]:

Gr(E) =
[
(E + ig)I − Hdevice − S

r
L − S

r
R

]−1
(4)

The coupling matrix (self-energy) between left/right lead and
central device is defined as

S
r
L/R = t†

L/RgL/RtL/R (5)

where, tL/R is referred to as the coupling matrix, which shows the
hopping of electron from the left/right electrode to the device. gL/R is
the surface Green’s function of left/right lead, which is calculated by
using Dyson’s equation with an iterative procedure [46,47]:

gL/R(E) =
[
(E + ig)I − H0 − H1gL/R(E)H†

1

]−1
, (6)

where H0 and H1 are the Hamiltonian of one isolated layer of the lead
and the hopping between neighboring layers, respectively. It should
be noted that the surface Green’s function in the first step of iteration
process is calculated by gL/R(E) = [(E + ig)I − H0]−1.

In NEGF theory, the transmission probability of carriers through
the device at energy E, T(E), can be written as [48]:

T(E) = Tr
[
CL(E)Gr(E)CR(E)Ga(E)

]
, (7)

where Tr(X) gives trace of matrix X. Ga = [Gr]† is advanced Green’s
function of the center device area, and CL (CR) is the contact-
broadening function describing the coupling between central device
and left (right) lead. The coupling matrix, which is the energy
level broadening matrix due to the source (drain) contacts, can be
obtained from the self energy terms via the below formula:

CL/R(E) = i
[
S

r
L/R(E) − S

a
L/R(E)

]
. (8)

Once Hamiltonian and self energy terms are known, all quantities
of interest can be calculated from Eqs. (4) and (7). Transmission
coefficient is related to electrical conductance: T = G/G0, where
G0 = 2e2/h is referred to as conductance quantum.
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