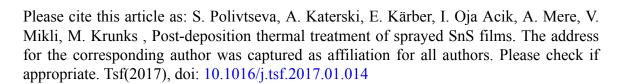
Accepted Manuscript

Post-deposition thermal treatment of sprayed SnS films

S. Polivtseva, A. Katerski, E. Kärber, I. Oja Acik, A. Mere, V. Mikli, M. Krunks

PII: S0040-6090(17)30014-7


DOI: doi: 10.1016/j.tsf.2017.01.014

Reference: TSF 35726

To appear in: Thin Solid Films

Received date: 5 May 2016

Revised date: 28 November 2016 Accepted date: 9 January 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Post-deposition thermal treatment of sprayed SnS films

S.Polivtseva¹, A.Katerski¹, E.Kärber¹, I.Oja Acik¹, A.Mere¹, V.Mikli², M.Krunks¹*

¹Laboratory of Thin Film Chemical Technologies, Department of Materials Science, Tallinn

University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia

²Chair of Semiconductor Materials, Department of Materials Science, Tallinn University of

Technology, Ehitajate tee 5, 19086 Tallinn, Estonia

*Corresponding author. E-mail: Malle.Krunks@ttu.ee

Abstract

SnS films were grown by the chemical spray pyrolysis method using aqueous solutions

containing SnCl₂ and SC(NH₂)₂ at molar ratios of 1:1 and 1:8 in air at a substrate temperature of

200 °C. As-deposited films were thermally treated at 450 °C in nitrogen and vacuum

atmospheres. All samples were studied using X-ray diffractometry, Raman spectroscopy, energy-

dispersive X-ray analysis, and ultraviolet-visible spectroscopy. The as-grown films consisted of

cubic SnS as the only crystalline phase regardless of the molar ratio of the precursors in the spray

solution. Annealing of the 1:1 films (derived from the 1:1 solution) in vacuum yielded metallic

Sn, whereas annealing in N₂ produced films composed of a mixture of cubic SnS and SnO₂

phases, indicating the presence of oxygen-containing non-crystalline phases in the as-grown

films. Thermal treatment of the 1:8 films in nitrogen yielded films composed of Sn₂S₃, whereas

vacuum annealing produced films consisting of orthorhombic SnS with a bandgap energy of 1.4

eV.

Download English Version:

https://daneshyari.com/en/article/5465943

Download Persian Version:

https://daneshyari.com/article/5465943

<u>Daneshyari.com</u>