Accepted Manuscript

Structural and optical properties of Er-doped TiO2 thin films prepared by dual-frequency magnetron co-sputtering

Jiaqi Yang, Yibo Hu, Chenggang Jin, Lanjian Zhuge, Xuemei Wu

PII: S0040-6090(17)30186-4

DOI: doi: 10.1016/j.tsf.2017.03.012

Reference: TSF 35860

To appear in: Thin Solid Films

Received date: 9 November 2016 Revised date: 3 March 2017 Accepted date: 7 March 2017

Please cite this article as: Jiaqi Yang, Yibo Hu, Chenggang Jin, Lanjian Zhuge, Xuemei Wu, Structural and optical properties of Er-doped TiO2 thin films prepared by dual-frequency magnetron co-sputtering. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Tsf(2017), doi: 10.1016/j.tsf.2017.03.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Structural and optical properties of Er-doped TiO₂ thin films prepared by dual-frequency magnetron co-sputtering

Jiaqi Yang^{1,2}, Yibo Hu^{1,2}, Chenggang Jin^{1,2}, Lanjian Zhuge³*, Xuemei Wu^{1,2}*

¹College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou

Nano Science and Technology, Soochow University, Suzhou 215006, China

Abstract

Er-doped TiO_2 thin films have been prepared by dual-frequency magnetron co-sputtering with two targets composed of TiO_2 and Er_2O_3 . The structural and optical properties of these thin films were investigated using various characterization techniques. X-ray photoelectron spectroscopy measurements show that the content of Er increases when the power on Er_2O_3 target increases. X-ray diffraction patterns indicate that the anatase TiO_2 peaks become weaker with the increasing power on Er_2O_3 target and the films tend to form amorphous structure. Scanning electron microscopy results show that the grain size decreases with the rise in Er content. UV-vis spectrophotometric analyses reveal that the values of band gap decrease from $3.35 \pm 1.3\%$ eV to $3.02 \pm 1.3\%$ eV with the increasing amount of Er from 0 at% to 3.2 at%. The red shift in the optical adsorption edge may contribute to a higher photocatalytic activity of TiO_2 thin films.

Keywords: Er-doped TiO₂ thin films; Dual-frequency magnetron co-sputtering; Band gap

1. Introduction

Titanium dioxide (TiO₂) thin films were extensively studied due to their applications in environmental fields such as self-cleaning of glasses and windows, water treatment, especially the photocatalytic degradation after ultraviolet (UV) light irradiation [1-10]. TiO₂ under UV radiation can disintegrate organic pollutants into carbon dioxide and water [4, 6, 9, 10, 29]. However, its low utilization of solar energy presents a strong drawback for its use in photocatalysis due to its large band gap energy of about 3.2 eV. Therefore, considerable attentions have been paid to extending the light response range of TiO₂ photocatalysts from UV to the visible domain.

The photocatalytic activity of TiO₂ under visible light can be enhanced by suitable doping [4-8,

²Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China

³Analysis and Testing Center, Soochow University, Suzhou 215123, China

^{*}Electronic mail: <u>lizhuge@suda.edu.cn</u> (Lanjian Zhuge); <u>xmwu@suda.edu.cn</u> (Xuemei Wu)

Download English Version:

https://daneshyari.com/en/article/5465980

Download Persian Version:

https://daneshyari.com/article/5465980

<u>Daneshyari.com</u>