Accepted Manuscript

Controlling refractive index in AlN films by texture and crystallinity manipulation

A.E. Giba, P. Pigeat, S. Bruyere, T. Easwarakhanthan, F. Mucklich, David Horwat

PII: S0040-6090(17)30492-3

DOI: doi: 10.1016/j.tsf.2017.06.057

Reference: TSF 36064

To appear in: Thin Solid Films

Received date: 23 November 2016

Revised date: 27 June 2017 Accepted date: 28 June 2017

Please cite this article as: A.E. Giba, P. Pigeat, S. Bruyere, T. Easwarakhanthan, F. Mucklich, David Horwat, Controlling refractive index in AlN films by texture and crystallinity manipulation, *Thin Solid Films* (2017), doi: 10.1016/j.tsf.2017.06.057

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Controlling refractive index in AlN films by texture and crystallinity manipulation

A.E. GIBA^{1,2}, P. PIGEAT¹, S.BRUYERE¹, T.EASWARAKHANTHAN¹, F. MUCKLICH², David HORWAT^{1,*}

Abstract:

Highly textured polycrystalline aluminum nitride (c-AlN) thin films with hexagonal wurtzite structure have been prepared by direct current reactive magnetron sputtering (DC) of pure aluminum using different compositions of the gas phase and different substrate temperatures. The structure and the microstructure of the films have been investigated by x-ray diffraction (XRD) and transmission electron microscopy (TEM). In addition, the complex refractive index dispersion $\overline{N}(\lambda) = n(\lambda) + jk(\lambda)$ of the films and their thickness have been determined from the normal-incidence transmittance spectra measured in the UV and visible regions. An increase in the XRD intensity of (002) planes associated with the nitrogen contents in the gas composition has been observed. It was found that higher nitrogen content in the gas phase mixture and higher substrate temperature help to improve the preferred orientation of the coatings along the c-axis of the wurtzite cell. This is accompanied by an increase of the ordinary refractive index (n_0) from 1.8 to 2.1. This can be attributed to the reduction of the lateral defect density between the columns' interfaces in highly textured samples, which is in line with the TEM observation that shows well aligned columns in the sample with highest ordinary refractive index. which is consistent with Consistently with the hypothesis that improved preferential crystallographic orientation enhances the dipole alignment along that direction. lead to decrease the density of defects owing to the better columnar alignment.

¹Institut Jean Lamour – UMR CNRS 7198– Université de Lorraine, Nancy, France

² Department Materials Science and Engineering, Saarland University, D-66123 Saarbrucken, Germany

^{*} corresponding address : david.horwat@univ-lorraine.fr

Download English Version:

https://daneshyari.com/en/article/5466070

Download Persian Version:

https://daneshyari.com/article/5466070

<u>Daneshyari.com</u>