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A B S T R A C T

Five dispersion models of interband electronic transitions in disordered solids based on the combination
of the Tauc’s law and the Lorentz model (or the Lorentz function) will be discussed. These models are the
Campi–Coriasso, Jellison–Modine (Tauc–Lorentz), Ferlauto et al. (Cody–Lorentz) and we also propose two
other models. The models that we propose can be considered to be modifications of the Jellison–Modine
and Ferlauto et al. models. This modification consists of the fact that these models are based on the Lorentz
function, not on the response function of the damped harmonic oscillator. The analytic expressions for the
real part of the dielectric function of the Campi–Coriasso model and one of our models will be published.
The differences between the presented models will be compared by means of fitting the optical constants
(functions) calculated with one model by other models.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In very rough approximation the interband electronic transitions
in disordered solids are described by the Lorentz model repre-
senting dielectric response of classical damped harmonic oscillator
(DHO) [1]. The dependence of the complex dielectric function on the
photon energy E can then be written as

ê(E) = 1 +
2
p

N

E2
c − E2 − iBE

, (1)

where Ec, B and N are the parameters of DHO. The central energy Ec

and broadening B in classical model are related to restoring Fr and
damping Fd forces:

Fr = −krr and Fd = −kd ṙ (2)

where r and ṙ are deviation of electron from the equilibrium position
and its velocity, respectively. The elastic kr and damping kd constants
are related to Ec and B as [1]

Ec = �

√
kr

me
and B = �

kd

me
. (3)

The symbols � and me denote the reduced Planck constant and
electron mass, respectively. The parameter N is transition strength

* Corresponding author.
E-mail address: franta@physics.muni.cz (D. Franta).

introduced in [2]. If we assume that only the valence electrons con-
tribute to the interband electronic transitions then the transition
strength is proportional to the density of valence electrons Nve:

N =
pe2

�
2

240me
Nve , (4)

where e is electron charge and 40 is vacuum permittivity. Note that
the different parameters are often used instead of the quantity N. For
example, the oscillator strength (or just strength) S = 2N/p, plasma
energy Ep =

√
2N/p or parameter A = 2N/(pEc) called ampli-

tude. The quantity S is different from the dimensionless quantum
mechanical quantity f called oscillator strength.

The real and imaginary part of the dielectric function (1) are
expressed as

er(E) = 1 +
2N
p

E2
c − E2(

E2
c − E2

)2
+ B2E2

, (5)

ei(E) =
2N
p

BE(
E2

c − E2
)2

+ B2E2
. (6)

These functions for chosen dispersion parameters of DHO are plotted
in Fig. 1. For an underdamped harmonic oscillator, i.e. for Ec > B/2,
the imaginary part of the dielectric function can be rewritten as

ei(E) =
NB

2pEr

(
1

(E − Er)2 + B2/4
− 1

(E + Er)2 + B2/4

)
(7)
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Fig. 1. Complex dielectric functions calculated by the Lorentz model and different versions of the Tauc–Lorentz model for N = 100 eV2, Ec = 3 eV, B = 2 eV, Eg = 1 eV and
Eq = 1 eV. Acronyms: DHO – damped harmonic oscillator; CC – Campi–Coriasso; JM – Jellison–Modine; ASF – A.S. Ferlauto et al.; TLF – truncated Lorentz function.

where

Er =
√

E2
c − B2/4 (8)

is the resonant energy. In the limit B → 0 the Lorentz functions in
Eq. (7) can be rewritten using delta functions as

ei(E) =
N
Er

(d(E − Er) − d(E + Er)) (9)

which represents the bridge between the classical and quantum the-
ories of dielectric response because this equation can be also derived
from the Fermi golden rule [3] for the discrete transitions with
energy Er. Reversely, the function in Eq. (7) can be interpreted as
Lorentzian e-broadened discrete transitions in Eq. (9) [4]. In this case
the broadening parameter B represents a full width half maximum
(FWHM) value of the normalized broadening Lorentz function:

b(x) =
B

2p
1

x2 + B2/4
. (10)

Note that the critically damped (Ec = B/2) or overdamped (Ec <
B/2) DHO cannot be expressed as Lorentzian e-broadened discrete
transitions.

In practice it is not sufficient to use Lorentz model with only one
DHO for the description of interband electronic transitions but it is
necessary to consider the model with several DHO:

ê(E) = 1 +
2
p

∑
t

Nt

E2
c,t − E2 − iBtE

, (11)

where the index t is used to distinguish individual DHO. Note that
in the limit Ec → 0 the contribution corresponds to the Drude
model [1]. The model that combines both the Lorentz and Drude
terms is known as the Drude–Lorentz model. The total transition
strength of valence electrons N is the sum of individual transition
strengths:

N =
∑

t

Nt . (12)

The Drude–Lorentz model is well suited for the description of
dielectric functions of metals where the Drude terms are used for
the contributions from free electrons (intraband transitions) and the
Lorentz terms are used to express the interband transitions. In the
case of dielectrics the Lorentz model fails because the electronic band

structure leads to existence of the band gap and the Lorentz model
cannot describe the region below the band gap energy Eg where the
absorption is negligible.

The behavior of dielectric response in the vicinity of the band gap
can be derived using the parabolic band approximation, which gives
the quadratic dependence of joint density of states for energies above
Eg:

J(E) ∝ (E − Eg)2 . (13)

Therefore, if the momentum matrix element is assumed to be con-
stant, then the imaginary part of the dielectric function in the vicinity
of Eg is given by the so called Tauc’s law [5]:

ei(E) ∝ (E − Eg)
2

E2
for E > Eg

ei(E) = 0 for E ≤ Eg . (14)

Note that the dielectric function must satisfy three fundamental
conditions coming from the classical theory of dispersion. The first
condition known as the time-reversal symmetry is [1]

ê(E) = ê(−E)∗ , (15)

where the symbol * denotes the complex conjugation. This condition
expresses the fact that the complex dielectric function (suscepti-
bility) is a Fourier image of the real response function. The second
condition are the Kramers–Kronig relations [1,6,7] which ensure the
causality of the response function

er(E) − 1 =
1
p

−
∫ ∞

−∞
ei(X)
X − E

dX , (16)

ei(E) = − 1
p

−
∫ ∞

−∞
er(X) − 1

X − E
dX . (17)

The third condition says that the dielectric function must have
convergent sum rule integral

∫ ∞

0
E ei(E) dE = N , (18)

which corresponds to the fact that the system has finite density of
charged particles [1,8,9]. The above conditions imply that the imagi-
nary part of the dielectric function must be odd function of E and for
high energies it must fall faster than 1/E2. The Drude–Lorentz model
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