Accepted Manuscript

TiO2-based decorative coatings deposited on the AISI 316L stainless steel and glass using an industrial scale magnetron

L. Skowronski, A.A. Wachowiak, K. Zdunek, M. Trzcinski, M.K. Naparty

PII: S0040-6090(17)30049-4

DOI: doi: 10.1016/j.tsf.2017.01.039

Reference: TSF 35751

To appear in: Thin Solid Films

Received date: 23 August 2016 Revised date: 17 December 2016 Accepted date: 21 January 2017

Please cite this article as: L. Skowronski, A.A. Wachowiak, K. Zdunek, M. Trzcinski, M.K. Naparty, TiO2-based decorative coatings deposited on the AISI 316L stainless steel and glass using an industrial scale magnetron. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Tsf(2017), doi: 10.1016/j.tsf.2017.01.039

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

TiO₂ - based decorative coatings deposited on the AISI 316L stainless steel and glass

using an industrial scale magnetron

L. Skowronski^{1,c}, A.A. Wachowiak¹, K. Zdunek², M. Trzcinski¹, M.K. Naparty¹

¹ Institute of Mathematics and Physics, UTP University of Science and Technology, Kaliskiego 7, 85-

796 Bydgoszcz, Poland

² Warsaw University of Technology, Faculty of Materials Science, Woloska 141, 02-507 Warsaw,

Poland

Corresponding author: Lukasz Skowronski: lukasz.skowronski@utp.edu.pl

Abstract

This paper presents a study of optical and microstructural properties of the TiO₂/316L, TiO₂/Ti/316L

and TiO₂/Ti/glass interference systems obtained by gas injection magnetron sputtering technique

(GIMS) employing a commercial magnetron line. The samples are examined by means of

spectrophotometry, spectroscopic ellipsometry, confocal optical microscopy, x-ray photoelectron

spectroscopy and atomic force microscopy. The investigation is completed by colorimetric analysis.

Our analysis shows the significant differences in the color of samples with a TiO₂ layer with the

thickness of this layer in the range 30-35 nm.

Keyword

decorative coatings; titanium dioxide; magnetron sputtering; GIMS; CIE Lab color space; optical

properties

1. Introduction

Titanium dioxide has found many high-tech applications in varous fields, including dye-sensitized

solar cells, optical filters, antireflection and wear coatings as well as electrochromic devices [1-6]. Yet

another application of TiO₂ is using it as a decorative coating in architecture, automotive industry and

jewelry [7-10]. In the visible spectral range, the titanium dioxide is a non-absorbing material. The

Download English Version:

https://daneshyari.com/en/article/5466249

Download Persian Version:

https://daneshyari.com/article/5466249

<u>Daneshyari.com</u>