Accepted Manuscript

Pulsed laser deposition of Mo-V-O thin films for chromogenic applications

M.A. Ashrafi, M. Ranjbar, H. Kalhori, H. Salamati

PII: S0040-6090(16)30796-9

DOI: doi: 10.1016/j.tsf.2016.11.041

Reference: TSF 35643

To appear in: Thin Solid Films

Received date: 28 May 2016

Revised date: 16 November 2016 Accepted date: 25 November 2016

Please cite this article as: M.A. Ashrafi, M. Ranjbar, H. Kalhori, H. Salamati, Pulsed laser deposition of Mo-V-O thin films for chromogenic applications. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Tsf(2016), doi: 10.1016/j.tsf.2016.11.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Pulsed Laser Deposition of Mo-V-O Thin Films for Chromogenic Applications

M. A. Ashrafi, M. Ranjbar*, H. Kalhori, H. Salamati

Department of Physics, Isfahan University of Technology, Isfahan, 8415683111, Iran

1. Abstract

Mo-V-O thin films were prepared by pulsed laser deposition (PLD) technique at an oxygen pressure of 13.3 Pa

and room temperature on glass and Indium tin oxide (ITO)/glass substrates from $(MoO_3)_{1-x}(V_2O_5)_x$ (x=0, 0.09,

0.17, 0.23, 0.29) targets. We studied the effect of V₂O₅ counterpart on the growth characteristics of Mo-V-O thin

films and coloring switching properties including thermochromic, gasochromic, photochromic and

electrochromic. Surface morphology, surface chemical states, optical and electrochemical properties were

examined using atomic force microscope (AFM), field emission scanning electron microscope (FE-SEM), X-ray

photoelectron spectroscopy (XPS), UV-Vis spectroscopy and electrochemical impedance spectroscopy (EIS).

Morphological characterizations illustrated porous cauliflower-like surface for the thin films and a columnar

growth was observed in which surface roughness varied by x. XPS spectra showed that Mo surface composition

for all the samples are Mo^{6+} and V composition at x=0.09 is a combination of V^{4+} and V^{5+} states. At the other

stoichiometries the main state was V5+. Moreover, XPS and EDS revealed that V:Mo molar ratio in a deposited

film is smaller than in the target used for. It was found that there is a relation between the vanadium valance

states and the optical band gap as well as chromogenic properties.

Keywords: $(MoO_3)_{1-x}(V_2O_5)_x$, thin film, pulsed laser deposition, XPS, chromogenic.

2. Introduction

Recently, chromogenic materials have become more important because they allow the transmittance of

visible light and solar energy to be varied under the action of an external stimulus [1]. They are also known by

other names such as "smart", "intelligent" and "switchable" materials [1]. They work based on the

electrochromic, thermochromic, photochromic and gasochromic effects. Electrochromic materials exhibit a

* Corresponding author; Mehdi Ranjbar,

Department of Physics, Isfahan University of Technology, Isfahan, 8415683111, Iran

Email: Ranjbar@cc.iut.ac.ir

1

Download English Version:

https://daneshyari.com/en/article/5466400

Download Persian Version:

https://daneshyari.com/article/5466400

Daneshyari.com