ARTICLE IN PRESS

Thin Solid Films xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Thin Solid Films

journal homepage: www.elsevier.com/locate/tsf

Surface modified catalytically grown carbon nanofibers/MnO₂ composites for use in supercapacitor

Fitri Nur Indah Sari, Hsuan-Min Lin, Jyh-Ming Ting *

Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan

A R T I C L E I N F O

ABSTRACT

Article history: Received 14 May 2016 Received in revised form 19 July 2016 Accepted 27 July 2016 Available online xxxx

Keywords: Carbon nanofiber MnO₂ Supercapacitor Acid treatment Microwave-assisted hydrothermal We have reported a fast and eco-friend method to synthesize the MnO_2 on catalytically grown carbon nanofiber (CGCNF). The CGCNF was functionalized by acid treatment under various H_2SO_4/HNO_3 ratios. A microwaveassisted hydrothermal method was then used to synthesize $MnO_2/CGCNF$ composites at a very short time of 5 min. We demonstrated that the surface modification has significant effect on the MnO_2 deposition and the electrochemical performance of the resulting $MnO_2/CGCNF$ composites. Electrical impedance spectroscopy analysis and cyclic voltammetry showed that O-functional group controls the electrical conductivity and the electrochemical performance of both CGCNF and CGCNF/MnO_2 composites, respectively. It was found that C=O bond assists the MnO_2 deposition. CGCNF/MnO_2 composite showing specific capacitance (Csp) of 257 F/g at a scan rate of 5 mV/s and electrical resistance of 19 Ω was demonstrated.

© 2016 Published by Elsevier B.V.

1. Introduction

Energy storage devices have attracted more and more attentions [1-3] for use in, for example, mobile phone and electric automobile. One of such energy storage devices is supercapacitor. Supercapacitor provides high energy density, long cyclic stability, and excellent charge/discharge characteristics [1,2,4]. Based on the energy storage mechanism, supercapacitor can be an electrical double-layer capacitor (EDLC) where porous carbon materials dominate the electrodes [5,6] and pseudo-capacitors where redox-active materials serve as the electrodes [7,8]. In general, pseudo-capacitors based on transition metal oxides/hydroxides and conducting polymers have higher specific capacitance (C_{sp}) than the EDLCs based on carbonaceous materials [9,10]. Some of the common redox-active materials include RuO₂, Co₃O₄, NiO, NiOH, and MnO₂ [11–14].

Among these redox-active materials, RuO_2 exhibits superior C_{sp} but suffers from its high cost and toxicity [15,16]. Low cost, environmental friendly oxides are thus called for. One of such materials is MnO_2 , which can be operated in a neutral aqueous electrolyte [17–19]. However, it is also known that MnO_2 has apparent drawbacks, for example, low electronic conductivity (10^{-5} – 10^{-6} S cm⁻¹). Therefore, the addition of a conductive material such as activated carbon, carbon fiber, carbon nanotube, and graphene into MnO_2 has been investigated [20,21]. These carbon materials are known to provide advantages of

* Corresponding author. E-mail address: jting@mail.ncku.edu.tw (J.-M. Ting).

http://dx.doi.org/10.1016/j.tsf.2016.07.085 0040-6090/© 2016 Published by Elsevier B.V. high chemical and mechanical stability, low electrical resistance, and long aspect ratio. They are popular carbonaceous backbones in metal oxide/carbon material composites. However, the hydrophobicity of carbon can influence the growth of MnO₂ on the surface [22]. To decrease the hydrophobicity, surface modification through high temperature atmospheric oxidation [21,23], plasma treatment [24-26], electrochemical treatment [27], surface functional group grafting [28], or chemical oxidation [25,29-32] are used. In the context of MnO₂/carbon nanofiber (CNF) composite synthesis, surface treatment of the CNFs is often required. Various agents have been used for the surface treatments. MnO₂ was grown on HNO₃ treated plasma enhanced chemical vapor deposited vertically aligned CNFs using an electrochemical deposition method [31], and HCl treated electrospun CNFs [32], as-made electrospun CNFs [33], and H₂SO₄ treated electrospun CNF/CNT using wet chemistry methods [34]. Furthermore, none of the CNFs used exhibits better electrical conductivity than the catalytically grown CNF (CGCNF) [35] used in this study.

In the present study, CGCNF is used as the backbone for the growth of MnO_2 , leading to the formation of $MnO_2/CGCNF$ composites. The CGCNFs were treated with HNO_3/H_2SO_4 solutions having different compositions. This type of CNFs is highly graphitic, giving low electrical resistance. The growth of MnO_2 on the CGCNFs was performed using a simple, fast, and nonpolluting process, which is a microwave-assisted hydrothermal (MHT) method. We demonstrate that MnO_2 can be deposited on the CGCNF at a very short time of 5 min by the MHT, and the capacitance of the resulting $MnO_2/CGCNF$ composite is as high as 257 F/g at a scan rate of 5 mV/s and the electrical resistance is as low as 19 Ω .

Please cite this article as: F.N.I. Sari, et al., Surface modified catalytically grown carbon nanofibers/MnO2 composites for use in supercapacitor, Thin Solid Films (2016), http://dx.doi.org/10.1016/j.tsf.2016.07.085

ARTICLE IN PRESS

F.N.I. Sari et al. / Thin Solid Films xxx (2016) xxx-xxx

2

Table 1 Experimental matrix

Fiber ID	Acid-treatment solution composition	Composite ID	MHT solution composition ^a
CGCNF	-		
AT	100% HNO ₃	1-20AT	0.0025 g AT fiber $+$ 0.05 g KMnO ₄
SN19	10%H ₂ SO ₄ + 90% HNO ₃	1-20SN19	0.0025 g SN19 fiber + 0.05 g KMnO ₄
SN28	20% H ₂ SO ₄ + 80% HNO ₃	1-20SN28	0.0025 g SN28 fiber + 0.05 g KMnO ₄
SN37	30% H ₂ SO ₄ + 70% HNO ₃	1-20SN37	0.0025 g SN37 fiber + 0.05 g KMnO ₄
SN46	40% H ₂ SO ₄ + 60% HNO ₃	1-20SN46	0.0025 g SN46 fiber + 0.05 g KMnO ₄
SN55	50% H ₂ SO ₄ + 50% HNO ₃	1-20SN55	0.0025 g SN55 fiber + 0.05 g KMnO ₄
SN64	60% H ₂ SO ₄ + 40% HNO ₃	1-20SN64	0.0025 g SN64 fiber + 0.05 g KMnO ₄
SN73	70% H ₂ SO ₄ + 30% HNO ₃	1-20SN73	0.0025 g SN73 fiber + 0.05 g KMnO ₄
SN82	80% H ₂ SO ₄ + 20% HNO ₃	1-20SN82	0.0025 g SN82 fiber + 0.05 g KMnO ₄
SN91	90% H ₂ SO ₄ + 10% HNO ₃	1-20SN91	0.0025 g SN91 fiber $+$ 0.05 g KMnO ₄

^a All contain 0.2 ml 37% HCl.

2. Experimental

2.1. Surface treatment of CGCNFs

The CGCNFs were provided by Pyrograf Products, Inc. of USA. In the beginning, as-received CGCNFs were immersed in acetone under magnetic stirring at room temperature for a few hours in order to remove the organic residues on the fiber surface. The CGCNFs were then surface treated in an acid solution at 90 °C for various durations. 6 h when HNO₃ concentration \ge H₂SO₄ concentration and 1 h when H₂SO₄ concentration > HNO₃ concentration to prevent the dissolution or over etching of the CGCNFs. The conditions are summarized in

Table 1. After the acid treatment, the resulting suspension fluid was washed with de-ionized (DI) water for several times and filtered using a 0.2 μ m nylon filter paper. At the end, the fibers were dried at 100 °C overnight.

2.2. Synthesis of MnO₂/CGCNFs composites

MnO₂/CGCNF composites were fabricated using a MHT method. CGCNFs were mixed with KMnO4 (J.T. Baker) at a desired ratio in a 37% HCl aqueous solution and then sonicated for 15 min. The CGCNF types and the CGCNF to MnO₂ ratios used in the solutions are also summarized in Table 1. The solution was then subjected to MHT

Fig. 1. XPS C1s spectra for Samples (a) CGCNF, (b) AT, and (c) SN46.

Download English Version:

https://daneshyari.com/en/article/5466444

Download Persian Version:

https://daneshyari.com/article/5466444

Daneshyari.com