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This work compares the reflection optical response of a homogeneous sample with natural optical activity with
the Bragg reflection froman inhomogeneous system consisting of a periodic helicoidal structure. Examples of pe-
riodic helicoidal systems are cholesteric liquid crystals and the cuticle of some beetles. For transmitted light nat-
ural optical activity and Bragg reflection essentially lead to the same type of optical response, but there are
fundamental differences on how they reflect circularly polarized light. The Mueller matrix symmetries for the
two types of media are theoretically deduced and experimentally verified with ellipsometry measurements.
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1. Introduction

The vast majority of ellipsometry measurements in anisotropic non-
magnetic materials involve media in which the only relevant constitu-
ent tensor is the dielectric tensor, ε. The optical response of most solids
is determined in terms of the principal elements of ε, which define iso-
tropic, uniaxial or biaxial optical properties, and the rotations that de-
fine their orientations. The constitutive equations in terms of ε and
the permeability tensor μ are:

D ¼ εE; ð1aÞ

B ¼ μH: ð1bÞ

One interesting situation occurs when the direction of anisotropy
varies periodically in space, in specialwhen the dielectric tensor compo-
nents exhibit a helical spatial variation along the thickness direction.
Samples with these characteristics enter in a specific regime called the
circular Bragg regime, inwhich their reflectance is high only if the hand-
edness of the incidentwave is the same as the structural helix. Themost
well-known samples exhibiting these characteristics are cholesteric liq-
uid crystals [1], but similar responses are found in the solid cuticle of
some beetles [2] and it has been artificially engineered in chiral sculp-
tured thin films [3]. Materials with these characteristics are sometimes
referred as Reusch piles. They were first described in 1869 [4] as
mutilayer structures of an anisotropic dielectric material in which

there is an incremental rotation from every layer to the next about the
axis normal to the layers.

Circular Bragg reflection requires media characterized by a helicoid
chiral structure but the constituentmaterials do not require to be chiral.
Therefore, chirality arises at amacroscopic ormesoscopic level. A differ-
ent situation occurs when a homogeneous material with natural optical
activity is studied. In this case, chirality is caused by some handedness
that is intrinsic to the atomic ormolecular structure of thematerial. Nat-
ural optical activity alsomanifests as a distinctive response of themate-
rial with the handedness of circular polarization but, typically, it is only
recognized for light transmitted through thesematerials with the circu-
lar dichroism and optical rotation effects. Much less well-known is the
effect (or, more precisely, the absence of any effect) that natural optical
activity has on the reflection of circular polarized light (CPL). This work
explores the similarities and differences in the reflective optical re-
sponse of homogeneous samples with natural optical activity and inho-
mogeneous structures that exhibit a circular Bragg regime.

2. Theory

2.1. Electromagnetic theory

Amore complete formulation of anisotropy needs to incorporate ad-
ditional constituent tensors, for example, in the so-called bianisotropic
formulation:

D ¼ εEþ ρH; ð2aÞ

B ¼ μHþ ρ0
E; ð2bÞ
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in which ρ and ρ' are two magnetoelectric tensors. In practice, most
media that can be studied by spectroscopic ellipsometry are Lorentz re-
ciprocal, whichmeans that there exist a symmetry if the source and the
detector of an optical signal are interchanged. This implies:

ε ¼ εT ; μ ¼ μT ; ρ ¼ −ρ0 T
; ð3Þ

where the superscript T indicates transposition. In this case, the
magnetoelectric tensors, that in general are written as ρ=χ- iα andρ '=χT+ iαT, must satisfy χ=0 and α≠0. For this reciprocal case the
constitutive equations for a bianisotropic reciprocal medium can be
rewritten as:

D ¼ εE−iαH; ð4aÞ

B ¼ μHþ iαTE: ð4bÞ

In absorbingmedia all the tensor constitutive equations, i.e. ε, α andμ, become complex.
The propagation monochromatic plane wave with a angular fre-

quency ω, such that the time dependence is given by exp(iωt), in
bianisotropic homogeneous and some types of inhomogeneous media
can be conveniently treated with the Berreman method [5]. Briefly,
this method defines a differential propagation matrix or Berreman
transfer matrix, Δ, that describes the transformation of the generalized
field vector ψ=(Ex,Hy,Ey, -Hx) (being z the direction orthogonal to the

medium boundaries) with the differential equation ∂ψ
∂z ¼ �ik0Δψ in

which k0=ω/c. The ψ vector andΔmatrix used here should not be con-
fused with the ellipsometric angles ψ, Δ typically used in ellipsometry
measurements. From the eigenanalysis of Δ one can deduce the polari-
zation of the forward and backward propagating eigenmodes in the
medium.

We can now consider the simple case of an isotropic optical active
medium, in which ε=diag(ε,ε,ε) and α=diag(α,α,α). The Berreman
transfer matrix is:

Δ ¼
0 1−

ξ2

ε−α2

α ξ2−α þ ε
� �

i

ε−α2 0

ε 0 0 αi
−iα 0 0 1

0 −
α ξ2−α þ ε
� �

i

ε−α2 ε−
ξ2ε

ε−α2 0

2
66666664

3
77777775
; ð5Þ

where ξ=n0sinθ, θ is the angle of incidence and n0 the refractive index
of the incidence medium. For normal incidence (ξ=0) the
eigenanalysis of this matrix is very simple, with the two pairs of ei-
genvalues given by�ð ffiffiffi

ε
p þ αÞ and�ð ffiffiffi

ε
p � αÞ. The four eigenvectors,

casted as matrix columns, are given by.

ψ ¼
i i −i −i
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ε
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ffiffiffi
ε

p
i
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ε
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ε
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ε

p
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775; ð6Þ

where each column of the matrix is, respectively, the eigenvector
corresponding to the eigenvalues ð ffiffiffi

ε
p þ αÞ,�ð ffiffiffi

ε
p þ αÞ, ð ffiffiffi

ε
p � αÞ and�

ð ffiffiffi
ε

p � αÞ. The ratio between eigenvector elements (e.g. ψ00/ψ20=Ex/
Ey= - i) indicates that the eigenvectors always correspond to circular
polarized waves. But, interestingly, the eigenvectors do not depend on
α and only the eigenvalues contain information about themagnetoelec-
tric properties of the medium. This means that optical activity only
manifest as a bulk property but it has no effect on the interface reflection
[6,7]. A sort of intuitive microscopic explanation for this phenomenon
can be given with the Ewald-Oseen extinction model [8]. According to
this model, the incident light does not only interact with the reflecting
medium at the surface, but it has a certain penetration depth during

which it is extinguished, inducing the atoms of the medium to radiate
secondary waves that coherently superpose with the incident wave. In
chiral media this coherent superposition can have a net chiral effect to-
wards a certain handedness but, at normal incidence, there is a reversal
of wave helicity upon mirror reflection that makes the two contribu-
tions of opposite handedness to cancel out within the penetration
depth.

If a certain angle of incidence is considered (ξ≠0), thenα contributes
to the eigenmodes [9,6,7], but its effect is veryminor because, in general,
α≪ε. Due to this fact, spectroscopic ellipsometry studies in optically ac-
tivematerials (e.g. in inorganic crystals such as quartz, sodium chlorate,
cinnabar, etc. or in common organic compounds such as tartaric acid,
glucose, benzil, etc) do not need to consider the contribution of optical
activity. The influence that their natural gyrotropy has in the Fresnel re-
flection coefficients is around 10-5 or smaller, so it tends to be below the
experimental sensitivity. On the contrary, for transmission measure-
ments in bulk samples the optical activity scales by the ratio of the op-
tical pathlength to the wavelength providing factors of enhancement
of around 10,000 and making the circular birefringence and circular di-
chroism transmission effects easily detectable.

Recently, we reported the first spectroscopic determination of
natural optical activity in a semiconductor (AgGaS2) above the bandgap
using an ellipsometry measurement [7]. For that work we took
advantage of the fact that this crystal belongs to the tetragonal point
group �42m and, unlike for the isotropic case we have discussed, it has
an anisotropic magnetoelectric tensor: α=diag(α, -α,0). In [7] we
showed that reflection measurements (specially those at normal inci-
dence) become sensitive to anisotropic forms of the magnetoelectric
tensor. The natural optical activity of these materials changes as a func-
tion of the incoming polarization, and one remarkable consequence of
this is that reflection optical activity effects are not invariant under a
sample rotation.

Next, we can consider the case of a twisted medium following a pe-
riodic helical structure. The dielectric tensor can be expressed as [5,1]:

ε zð Þ ¼
�ε þ δ cos2βz β sin2βz 0
δ sin2βz �ε−δ cos2βz 0

0 0 εe

2
4

3
5; ð7Þ

where �ε ¼ ðεe þ εoÞ=2, δ=(εe -εo)/2 and β=2π/P, where P is the
pitch of the helix and εe and εo are respectively the extraordinary andor-
dinary dielectric constants that define the in-plane birefringence (δ) at
every layer. The Berreman propagation matrix of this inhomogeneous
medium is given by

Δ zð Þ ¼
0 1−

ξ2

εe
0 0

ε þ δ cos2βz 0 δ sin2βz 0
0 0 0 1

δ sin2βz 0 ε−ξ2−δ cos2βz 0

2
66664

3
77775
: ð8Þ

This propagation matrix, or the dielectric tensor in Eq. (7), have the
same symmetry that a monoclinic crystal with the monoclinic axis per-
pendicular to the crystal surface or that in an uniaxial crystal in which
the optic axis lies parallel to the sample surface and not aligned with
any of the axes of the reference frame. The difference with respect to
these cases, is that here there is a z-dependence that cannot be obviated
since the medium is inhomogeneous. Simple solutions (analytical for
the case of normal incidence and numerical for the rest) have been pro-
vided [5,1,10] by considering a local rotating coordinate system along
the helical axis. In the interval noPbλbneP the eigenvectors correspond-
ing to the eigenvalues represent almost circularly polarized waves and
the numerical calculation of the reflection and transmission coefficients
reveals that circularly polarized light is reflected if it has the handedness
of the cholesteric structure and transmitted if it has the opposite
handedness.
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