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a b s t r a c t 

Lorentz transmission electron microscopy (TEM) observations of magnetic nanoparticles contain informa- 

tion on the magnetic and electrostatic potentials. Vector field electron tomography (VFET) can be used 

to reconstruct electromagnetic potentials of the nanoparticles from their corresponding LTEM images. 

The VFET approach is based on the conventional filtered back projection approach to tomographic re- 

constructions and the availability of an incomplete set of measurements due to experimental limitations 

means that the reconstructed vector fields exhibit significant artifacts. In this paper, we outline a model- 

based iterative reconstruction (MBIR) algorithm to reconstruct the magnetic vector potential of magnetic 

nanoparticles. We combine a forward model for image formation in TEM experiments with a prior model 

to formulate the tomographic problem as a maximum a-posteriori probability estimation problem (MAP). 

The MAP cost function is minimized iteratively to determine the vector potential. A comparative recon- 

struction study of simulated as well as experimental data sets show that the MBIR approach yields quan- 

tifiably better reconstructions than the VFET approach. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In a Lorentz transmission electron microscopy (LTEM) experi- 

ment, an electron propagating through a thin specimen experi- 

ences a Lorentz Force F L = −e (E + v × B ) [ 1 ] due to the sample’s 

electrostatic field, E , and magnetic field, B ; −e is the electron’s 

charge and v its velocity. This (classical) force generates a deflec- 

tion of the electron trajectory, which can be used to explain the 

Fresnel and Foucault observation modes [2] . A more robust expla- 

nation of the nature of the electron-specimen interaction involves 

quantum mechanics, in which the electron is described by a wave 

function ψ(r ⊥ ) = a (r ⊥ ) e iϕ( r ⊥ ) [2] . Elastic scattering in the sample 

produces variations of the amplitude a ( r ⊥ ), whereas the electro- 

magnetic potentials affect the phase ϕ( r ⊥ ) of the wave; r ⊥ is a 

vector normal to the propagation direction. Aharonov and Bohm 

[3] showed, in 1959, that the phase of the exit wave function en- 

codes information on the sample’ s electrostatic potential, V ( r ⊥ , z ), 

∗ Corresponding author. 

E-mail address: mdg@andrew.cmu.edu (M. De Graef). 

and magnetic vector potential, A ( r ⊥ , z ), as follows: 

ϕ(r ⊥ ) = ϕ e (r ⊥ ) + ϕ m 

(r ⊥ ) = 

π

λE t 

∫ 
L 

V (r ⊥ , z) dz − e 

h̄ 

∫ 
L 

A (r ⊥ , z) · dr , 

(1) 

where � is the reduced Planck’s constant, E t is the total beam 

energy, and the integrals are carried out along the beam direc- 

tion, L . The total phase shift, ϕ, consists of an electrostatic con- 

tribution, ϕe , and a magnetic contribution, ϕm 

. The phases are 

not directly observable, but their effect on the image contrast can 

be determined by considering the point spread function, T L (r ⊥ ) , 
of the Lorentz lens. The image intensity is then given by the 

modulus-squared of the convolution product ψ(r ⊥ ) � T L ( r ⊥ ) [2] . 

Hence, characterization of the electromagnetic potentials begins 

with phase shift retrieval from the image intensities, using either 

electron holography [4] or the transport-of-intensity equation (TIE) 

formalism [5] , which is based on a through-focus series of Fres- 

nel images. We use the linearity of the TIE [6] and time reversal 

symmetry to retrieve the individual phases ϕe and ϕm 

. 

Characterization of the electromagnetic fields is then achieved 

by performing scalar field and vector field tomographic recon- 
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Fig. 1. A flow chart illustrating the methodology to determine electromagnetic po- 

tentials of a magnetic nanoparticle sample. 

structions to determine V ( r ) and A ( r ), respectively. We refer to 

the use of vector field tomography to reconstruct the electromag- 

netic potentials as Vector Field Electron Tomography (VFET) [7] . A 

schematic of the operations performed to complete an electromag- 

netic characterization task is shown in Fig. 1 . 

In this contribution, we primarily focus on vector field tomog- 

raphy to reconstruct A ( r ). In recent years, the VFET approach em- 

ployed the filtered back projection (FBP) approach to perform the 

reconstructions [8,9] . Although FBP yields a good estimate with a 

complete set of measurements, the typical missing wedge of TEM 

data significantly diminishes the quality of the reconstructions 

[10] . In addition, typical tilt series are obtained using an angular 

step size of 2 °–5 ° to minimize the necessary pre-processing steps 

(image alignments) and reduce beam damage. These limitations, 

collectively, yield a reconstruction result that can exhibit substan- 

tial artifacts. To alleviate these problems, we resort to a more ro- 

bust and statistically based tomographic reconstruction framework 

known as model-based iterative reconstruction (MBIR) to deter- 

mine A ( r ). This approach has had considerable success in improv- 

ing reconstruction quality in scalar tomography [11,12] . 

In Section 2 , we briefly outline conventional VFET and show 

how we can reconstruct all three component of A ( r ) from just 

two tilt series; we also perform an error analysis of the quality 

of VFET reconstructions in the presence of a missing wedge. Next, 

in Section 3 , we provide an overview of the MBIR framework, and 

in Section 4 , we incorporate MBIR into the reconstruction of A ( r ) 

and compare the results with those from conventional VFET recon- 

structions. 

2. Vector field electron tomography 

Vector field tomography is relatively new; it was not until 

1988 when Norton [13] , for the first time, outlined a mathemat- 

ical model to determine the 2D fluid field from acoustic time 

travel measurements. Subsequent years saw extensions of 2D vec- 

tor tomography to 3D cases; in particular, Juhlin [14] resolved the 

solenoidal part of a divergence free flow field using ultrasound 

Doppler measurements in 1992. In 2005, Lade et al. [8] presented 

the VFET model to reconstruct 3D vector fields from longitudinal 

and transverse measurements. In 2008, Phatak et al. [15] used the 

Fig. 2. (a) Illustration of phase shift acquisition for an x -tilt series with the arrows 

representing the electron propagation direction and the curved arrow indicating 

counter-clockwise sample rotation. (b) Representation of the reference frame used 

to express the differential vector element d l . 

VFET approach to reconstruct the magnetic vector potential and in- 

duction of magnetic nanoparticles. Since this VFET model is still 

relevant for our new MBIR method, we devote this section to a 

brief review of the VFET framework. 

Since tomographic reconstructions require a forward model to 

project the object being reconstructed, we begin by consider- 

ing the computation of the magnetic phase shift. The relation 

ϕ m 

(r ⊥ ) = − e 
h̄ 

∫ 
L 

A (r ⊥ , z) · d r describes the magnetic phase shift ob- 

tained at 0 ° tilt. To obtain the phase shift for a tilted sample we 

consider a tilt series around the x axis (counterclockwise); the new 

coordinate vectors, t , can be expressed in terms of the original 

ones, r , by r = R θ,x t where r = [ x y z] , t = [ u v w ] , and R θ , x is 

the counter-clockwise rotation matrix ( Fig. 2 (a)). From Fig. 2 (b), the 

vectorial line element, d l , of the projection line L ( v, θ ), can be writ- 

ten as d l = [ ̂  y sin (θ ) − ˆ z cos (θ )]d l. 

Writing A (r ) = A x (x, y, z) ̂ x + A y (x, y, z) ̂  y + A z (x, y, z) ̂ z , a generic 

projection equation for the x tilt series in Fourier space, ˜ ϕ m,x , can 

be obtained as: 

˜ ϕ m,x (k u , k v ) = − sin θ ˜ A y (k u , k v cos θ, k v sin θ ) 

+ cos θ ˜ A z (k u , k v cos θ, k v sin θ ) ; (2) 

a similar analysis for the y tilt series produces 

˜ ϕ m,y (k u , k v ) = − sin θ ˜ A x (k u cos θ, k v , k u sin θ ) 

+ cos θ ˜ A z (k u cos θ, k v , k u sin θ ) . (3) 

Eqs. (2) and ( 3 ) represent the Fourier slice theorem for 3D vector 

fields for x tilt series and y tilt series respectively. 

The formulation of the reconstruction procedure by means of 

the VFET approach begins by imposing a gauge constraint on the 

magnetic vector potential, i.e., ∇ · A = 0 . This constraint is written 
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