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a b s t r a c t 

Differential phase contrast in scanning transmission electron microscopy can visualize local electromag- 

netic fields inside specimens. The contrast derived from first moments, the so-called center of mass, of 

the diffraction patterns for each probe position can be quantitatively related to the local electromagnetic 

field under the phase object approximation. While only approximate first moments can be obtained with 

a segmented detector, in weak phase objects the fields can be accurately quantified on the basis of a 

phase contrast transfer function. Through systematic image simulations we further show that the quan- 

tification based on the approximated first moment is a good approximation also for strong phase objects. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Nano-scale spatial distribution of electromagnetic fields inside 

materials and devices is of critical importance to fundamentally 

understand the origins of their functional properties. Scanning 

transmission electron microscopy (STEM) boosted by aberration- 

correction technology enables us not only to directly observe 

atomic-scale local structures such as interfaces and surfaces of 

materials, but also to directly observe the local electromagnetic 

field structures they induce. In ordinary STEM, the focused elec- 

tron probe is scanned across the specimen, and STEM images are 

formed by using annular type dark-field detectors to collect elec- 

trons scattered through high angles as a function of probe position. 

On the other hand, electrons transmitted through the specimen 

will be deflected by the electromagnetic fields inside it. The deflec- 

tion is measurable by subtracting signals detected in diametrically 

opposing segments in an azimuthally segmented detector. The idea 

of enhancing phase contrast by subtracting signals from differ- 

ent detectors in STEM was first proposed by Rose [1] . Dekker and 

de Lang showed that the contrast obtained by subtracting signals 

from split detectors is related to the gradient of the phase of the 

specimen transmission function (and thus to the electromagnetic 
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fields), and this imaging mode is called differential phase contrast 

(DPC) [2] . Thus, DPC STEM can, in principle, visualize electromag- 

netic fields inside materials in real space. Phase contrast transfer 

functions (PCTFs) of DPC imaging in the one-dimensional and two- 

dimensional cases were given by Dekker and de Lang [2] and by 

Rose [3] , respectively. These mathematical descriptions are valid 

within the weak phase object approximation (WPOA). The linear 

approximation was extended to strong phase objects by Waddell 

and Chapman [4] . They showed that the first moment, or cen- 

ter of mass, of the electron intensity distribution in the detector 

plane for each probe position is closely related to the difference 

signals, and that a ‘first-moment detector’ gives a PCTF valid un- 

der the phase object approximation (POA). Since that early work, 

PCTFs for segmented and first-moment detectors have been dis- 

cussed in detail [5–12] . Recently, the first-moment measurement 

was interpreted more simply according to the Ehrenfest’s theorem 

[13] . While a segmented detector gives only an approximation to 

the actual first moment, approximating the first moment using a 

multi-segmented detector has been shown to retrieve the strong 

phase more accurately than the conventional WPOA method based 

on the PCTF for all but the thinnest (a few nanometers or less) 

of crystals [14] . Very recently, we proposed a simple quantification 

method based on the PCTF for the approximated first moment [15] , 

showing the combination of the approximated first moment and 

the PCTF methods can be more accurate than using each method 

independently. 
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Experimentally, DPC imaging has been performed mainly using 

segmented detectors for visualizing electromagnetic fields inside 

materials: e.g. magnetic domains [16–18] , ferroelectric domains 

[19] , p-n junctions [20] , quantum wells [21] , skyrmions [22,23] and 

atomic electric fields in crystals [19] . Recently, the first-moment 

detector was realized using a pixelated detector for atomic reso- 

lution DPC imaging [13] . Though segmented detectors yield only 

an approximation to the first moment, scintillator-type segmented 

detectors are still two or three orders of magnitude faster than the 

state-of-the-art pixelated detectors. The fast scan rate is of great 

advantage for atomic resolution imaging because (1) images from 

larger areas can be obtained, (2) electron irradiation damage and 

contamination of the sample can be suppressed, and (3) the probe 

positions are more accurate for post-processing (e.g. for integra- 

tion and divergence of the measured fields to obtain potential and 

charge-density information, respectively [11] ). 

In this paper, we aim to further develop a better quantification 

method for DPC signals obtained using a multi-segmented detector 

by combining the approximated first moment and the PCTF meth- 

ods. The PCTF formula given by Rose [3] is re-derived to make clear 

how to quantify the electromagnetic fields via PCTFs. We calcu- 

late several PCTFs for a 16-segment detector [24] on the basis of 

the approximated-first-moment method. We show this method is 

more accurate for strong phase objects than the conventional PCTF 

for simply subtracted segmented detector signals. Finally, we ex- 

plore the validity of the PCTF description based on the approxi- 

mated first moment through detailed image simulation. 

2. Theory 

In the early work by Rose [3] , the PCTF for coherent STEM 

imaging was derived in the coordinates of the equivalent TEM opti- 

cal system based on the reciprocity theorem [25] . Here, the PCTF is 

re-derived directly in the coordinates of the STEM optical system. 

We adopt a coordinate system in which r ⊥ denotes the real 

space coordinate in the plane perpendicular to the optical axis and 

k ⊥ denotes the reciprocal space coordinate conjugate to r ⊥ . The 

wave function of a STEM probe located at r ⊥ = R can be written 

as [26] 

ψ in ( r ⊥ , R ) = 

∫ 
T ( k ⊥ ) e 2 π i k ⊥ ·( r ⊥ −R ) d k ⊥ (1) 

T ( k ⊥ ) = A ( k ⊥ ) exp ( −i χ( k ⊥ ) ) (2) 

where T ( k ⊥ ) is the lens transfer function and χ ( k ⊥ ) is the lens 

aberration function. The aperture function A ( k ⊥ ) is uniform within 

the aperture, zero beyond it, and normalized such that the total in- 

tensity is unity. Under the WPOA, the wave function at the diffrac- 

tion plane after transmitting a thin specimen of projected potential 

v prj ( r ) is written as 

˜ ψ out ( k ⊥ , R ) = 

∫ (
1 + i σv prj ( r ⊥ ) 

)
ψ in ( r ⊥ , R ) e −2 π i k ⊥ ·r ⊥ d r ⊥ (3) 

where σ = 2 πme λ/ h 2 is an interaction constant. m, e ( > 0), λ and h 

denote the electron’s relativistic mass, the elementary charge, the 

electron’s wave length and Planck’s constant, respectively. For sim- 

plicity we only consider electric fields, but the method can readily 

be generalized to include the vector potential if the sample is mag- 

netic [27] . The measured diffraction pattern is the intensity of this 

wave function. The Fourier transform of the diffraction pattern in- 

tensity with respect to coordinate R can be shown to be 

˜ I ( k ⊥ , K ) = A ( k ⊥ ) δ( K ) 

+i σV prj ( K ) [ T ∗( k ⊥ ) T ( k ⊥ − K ) − T ( k ⊥ ) T ∗( k ⊥ + K ) ] 
(4) 

where V prj ( K ) is the Fourier transform of v prj ( R ), and absorption 

(i.e. any imaginary component of the real space potential) is ig- 

nored. The Fourier transform of the intensity in a general coherent 

STEM image is given by F [ I STEM 

(R) ] = 

∫ 
˜ I ( k ⊥ , K ) D ( k ⊥ )d k ⊥ , where 

F denotes Fourier transform with respect to R and D ( k ⊥ ) denotes 

a detector response function. Thus, the PCTF β( K ) may be defined 

as 

F [ I STEM 

( R ) ] = δ( K ) 

∫ 
A ( k ⊥ ) D ( k ⊥ ) d k ⊥ + σV prj ( K ) β( K ) (5) 

β( K ) = i 

∫ 
A ( k ⊥ ) D ( k ⊥ ) [ A ( k ⊥ − K ) exp ( −i χ( k ⊥ − K ) + i χ( k ⊥ ) ) 

−A ( k ⊥ + K ) exp ( i χ( k ⊥ + K ) − i χ( k ⊥ ) ) ] d k ⊥ 
(6) 

The integral in Eq. (5) is zero if the detector response function 

is antisymmetric ( D (−k ⊥ ) = −D (k ⊥ ) ). Detector response functions 

for DPC imaging normally satisfy this condition, as will be dis- 

cussed below. 

According to Ehrenfest’s theorem [28] , the expectation value 

of the momentum transferred to the electron in transmitting a 

thin specimen, namely the first moment of the intensity of the 

diffraction pattern, is proportional to the weighted average of 

the projected electric field inside the probe as described below 

[11,13,27,29] ∫ 
E ⊥ prj ( r ⊥ ) | ψ in ( r ⊥ , R ) | 2 d r ⊥ = −hv 

e 

∫ 
k ⊥ 

∣∣ ˜ ψ out ( k ⊥ , R ) 
∣∣2 

d k ⊥ (7) 

where the projected field E ⊥ prj ( r ⊥ ) is defined as the integration 

along the optical axis of electric field component perpendicular 

to the optical axis: E ⊥ prj (r ⊥ ) = 

∫ 
E ⊥ (r ⊥ , z)d z. This measurement is 

possible using a first-moment detector, which can be experimen- 

tally realized using a pixelated detector with a detector response 

function D 

F M 

α ( k ⊥ ) = k α , where α denotes x or y , and k α denotes 

the α component of k ⊥ . Applying this method, the measured field 

Ē FM 

α, prj 
(r ⊥ ) is given by 

Ē FM 

α, prj ( R ) 
def = −hv 

e 
I FM 

DPC ,α ( R ) = E α, prj ( R ) � | ψ in ( −R, 0 ) | 2 (8) 

where I FM 

DPC ,α (R) = 

∫ 
˜ I (k ⊥ , R) D 

FM 

α (k ⊥ ) dk ⊥ is the DPC image ob- 

tained by the first-moment detector and � denotes convolution. 

Here, the measured field is equal to the true field convolved with 

the probe intensity function. This equation holds not only within 

the WPOA but also within the phase object approximation (POA) 

[4,13] . Using a segmented detector, the first moment of the diffrac- 

tion pattern can be approximated using the following detector re- 

sponse function [14] 

D 

aFM 

α ( k ⊥ ) = 

{
k CoM 

α, j if k ⊥ lies within the j th segment , 

0 otherwise , 
(9) 

where k CoM 

α, j 
denotes the α component of the geometrical center- 

of-mass of the j th detector segment. The DPC image signal using a 

segmented detector can thus be evaluated as I aFM 

DPC ,α (R) = 

∑ 

j 

k CoM 

α, j 
˜ I j , 

where ˜ I j denotes the intensity detected in the j th segment (which, 

for consistency with the normalization of the aperture function, 

should be normalized by the total intensity of the bright field disk 

in the absence of the specimen). If the segment arrangement is 

symmetrical with respect to the origin of k ⊥ , the detector function 

is antisymmetric and the first term in Eq. (5) should be zero. The 

16-segment detector and the centers-of-mass of each segment are 

shown in Fig. 1 (a). 

Under the WPOA, the DPC image signal can be described as 

I DPC ,α( R ) = F 

−1 
[
σV prj ( K ) βα( K ) 

]
, (10) 

where βα( K ) is the PCTF obtained in Eq. (6) using D 

FM 

α (k ⊥ ) or 

D 

aFM 

α (k ⊥ ) , depending on whether a pixelated or segmented de- 

tector is used. βα( K ) is purely imaginary when D (−k ⊥ ) = −D (k ⊥ ) 
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