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a b s t r a c t 

With the aim of addressing the issue of sample damage during electron tomography data acquisition, 

we propose a number of new reconstruction strategies based on subsampling (which uses only a subset 

of a full image) and inpainting (recovery of a full image from subsampled one). We point out that the 

total-variation (TV) inpainting model commonly used to inpaint subsampled images may be inappropriate 

for 2D projection images of typical TEM specimens. Thus, we propose higher-order T V (HOT V) inpainting, 

which accommodates the fact that projection images may be inherently smooth, as a more suitable image 

inpainting scheme. We also describe how the HOTV method can be extended to 3D, a scheme which 

makes use of both image data and sinogram data. Additionally, we propose gradient subsampling as a 

more efficient scheme than random subsampling. We make a rigorous comparison of our proposed new 

reconstruction schemes with existing ones. The new schemes are demonstrated to perform better than 

or as well as existing schemes, and we show that they outperform existing schemes at low subsampling 

rates. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

One of the greatest challenges associated with electron tomog- 

raphy (and electron microscopy in general) is avoiding signifi- 

cant sample damage due to prolonged exposure to the electron 

beam. Hence for tomographic data acquisition the microscopist 

must somehow minimize the electron dose, all the while know- 

ing that most attempts to do so will result in a loss of accuracy 

in the 3D reconstruction. Typically the electron beam intensity is 

set, based on experience, to a level that maintains a suitably high 

signal-to-noise ratio while not producing obvious sample damage. 

In addition, the number of tilt-series orientations must be limited 

to a suitable number, which is again typically gauged by experi- 

ence. 

A recent and more cunning approach for limiting the dose in 

electron microscopy is subsampling , i.e., sampling only a fraction 

(e.g., 20%) of the total number of pixels in the image domain. Pos- 

sibilities for implementing subsampling experimentally in a scan- 

ning transmission electron microscope (STEM) are discussed briefly 

later in this article. A general prevailing strategy to interpret the 

subsampled images is to inpaint the missing pixels. Inpainting gen- 

erally refers to any mathematical model that can be solved numer- 

ically to interpolate (recover) missing parts of an image. Many pop- 
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ular inpainting models, including those used in the present work, 

are characterized as � 1 regularization or compressed sensing mod- 

els. 1 For instance, the works of Anderson et al. [1] and Oxvig et al. 

[2] used a discrete cosine transform (DCT) for the � 1 regularization 

model to inpaint subsampled microscopy images. An alternative 

approach for inpainting of atomic-resolution images using Bayesian 

dictionary learning was studied by Stevens et al. [3] . More generally 

within the mathematical community, a wide variety of inpainting 

strategies have been studied [4–7] , many of which also fall under 

the umbrella of � 1 regularization with combinations of frames and 

other transforms. 

Recently, Saghi et al. [8] demonstrated the potential effective- 

ness of inpainting for 3D electron tomography. In that work, a to- 

tal variation (TV) model was used to inpaint the 2D projection im- 

ages of a tilt series data set that was subsampled post mortem (the 

original data set was not acquired in a subsampled manner). As 

with other attempts to reduce the electron dose, subsampling will 

result in some loss of accuracy in the final 3D reconstruction. Part 

of the goal of the present study is to determine how we can limit 

this loss. 

As explained further below, the � 1 regularization models work 

by minimizing an appropriate � 1 norm, which is chosen based on 

prior knowledge of the behavior, or smoothness , of the image or 

1 Uncoincidentally, these models are popular for tomographic reconstruction in a 

wide range of scientific fields. 
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Fig. 1. Work flow for the various tomographic reconstruction strategies studied in 

the present work. Blocks highlighted by yellow stars indicate new strategies pro- 

posed here. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

function which we are trying to recover. The TV � 1 regulariza- 

tion model is a popular choice, which assumes that the imaging 

scene consists essentially of constant values with a small number 

of jumps or boundary points. For example, in the relatively simple 

case of homogeneous nanoparticles resting on a weakly-scattering 

support, the imaging scene can be approximated as a binary im- 

age in 3D (or more generally a piecewise constant function), and 

so the TV assumption is approximately satisfied. More recently, 

higher-order T V (HOT V) models have also been proposed for elec- 

tron tomographic reconstruction [9] . The latter models are more 

general and have the benefit of allowing for smooth changes in 

the imaging scene, characterized by low-order polynomial behav- 

ior. Related to the work in this paper, others have proposed using 

similar higher-order regularization methods known as TGV [10] . In 

Ref. [11] , the latter method was applied to inpaint missing wedges 

in 2D sinograms . An approach to inpaint sinograms with limited 

angular sampling using dictionary learning was also proposed in 

Ref. [12] . In Refs. [11,12] images at the known projection angles 

were fully sampled (as opposed to subsampled), and additional 1D 

projections were recovered by the algorithm. This problem differs 

significantly from the present work where we work with subsam- 

pled projection images. Moreover, here we extend the inpainting 

problem to the full 3D domain of the reconstruction. 

Here we propose a number new strategies for both image sub- 

sampling and appropriate inpainting models in the context of elec- 

tron tomography. First, we argue that HOTV models are more ap- 

propriate for inpainting subsampled 2D images (e.g., subsampled 

STEM images). 2 Second, we extend the HOTV model to a 3D in- 

painting model, which makes use of the data points in the images 

taken at nearby orientations. In other words, the 3D inpainting 

model also makes use of the data visualized as both 2D images 

and as a set of sinograms. Finally, we propose a “smarter” sub- 

sampling strategy, whereby a greater number of samples are taken 

at the important image regions, which in this work we regard as 

those regions where we estimate the magnitude of the gradient to 

be large. A diagram summary of this work in the electron tomogra- 

phy data processing work flow is provided in Fig. 1 , where we have 

omitted the important alignment procedure that is a multifaceted 

problem and somewhat disjoint from this work. In the diagram we 

highlight three blocks with yellow stars to indicate the new inves- 

tigations in this paper. 

2 We note here that a number of higher order methods have been proposed 

[10,13,14] and would likely be a suitable alternative to our approach, pending the 

available software. 

2. Problem description 

Electron tomography works by first acquiring a tilt series , where 

a transmission electron microscope is used to acquire images of 

the specimen from a number of viewing angles. These images are 

then carefully processed by image registration and reconstruction 

methods to yield a 3D approximation of the imaging scene, where 

each pixel in the 2D images is mathematically viewed as a data 

point used to reconstructed the 3D structure. These 3D images al- 

low us a more accurate and detailed understanding of materials 

applications in technology, medicine, and science [15–19] . 

Let the imaging scene that we want to reconstruct be denoted 

by f , a function defined in 3D space over some finite rectangu- 

lar domain given by � = [�x × �y × �z ] . The data acquired in 

electron tomography are traditionally 2D projection images of the 

form 

P θ ( f )(x, y ) = 

∫ 
�z 

f ( x, (y, z) Q θ ) dz, 

where Q θ = 

[
cos θ sin θ

− sin θ cos θ

]
. (1) 

This projection data is acquired with an electron microscope by 

orienting the sample at a finite number of angles { θ j } m 

j=1 
. For each 

orientation, the specimen is sampled over a discretization of the 

domain [ �x ×�y ], denoted by { (x a , y b ) } N a,b=1 
, where a typical value 

for N is 1024 and the number of angles m is on the order of 50 to 

100. This makes for a total of mN 

2 data points. 

A simple strategy for subsampling is to reduce the number of 

grid points (and hence, in an experiment, reduce the electron dose) 

by randomly sampling the specimen at some subset of the full 

N × N mesh. For each angle θ j , we denote some subset of the full 

mesh by S j = { (x i ( j, 1) , y i ( j, 2) ) } M 

i =1 
, where M < N 

2 . Here, i ( j , 1) and 

i ( j , 2) are some the index mappings for j th subsampled image and 

the x and y coordinates respectively, and the subsampling rate is 

defined by M / N 

2 . 

With the subsampled data, one can of course attempt to use the 

data given and implement a traditional reconstruction algorithm, 

such as a Fourier-based algorithm. However, Fourier-based meth- 

ods will not work because transforming the data into Fourier space 

via the Fourier slice theorem requires the full projection data. 

To introduce the concept of inpainting let us describe the TV in- 

painting method for the 2D projection images. First, let I S j ∈ R 

M×N 2 

denote the identity matrix containing only the rows from the sub- 

set S j , and let � p θ j 
( f ) ∈ R 

M denote the vectorized version of the 

subsampled projection data. Then recovery of the full 2D projec- 

tion image by the TV inpainting model is given by 3 

�
 q θ j 

( f ) = argmin 

q ∈ R N 2 
T V (q ) s.t. I S j q = 

�
 p θ j 

( f ) . (2) 

which, in words, means that the full 2D projection image � q θ j 
( f ) 

is that set of N 

2 values that possesses minimum total variation, 

subject to being entirely consistent with the subsampled projection 

data � p θ j 
( f ) . Here the anisotropic TV norm of an image g ∈ R 

N×N is 

given by 

T V (g) = 

N ∑ 

i =1 

N−1 ∑ 

j=1 

| g i, j+1 − g i, j | + 

N ∑ 

j=1 

N−1 ∑ 

i =1 

| g i +1 , j − g i, j | , (3) 

and this definition is naturally altered if the image is in vectorized 

form as in (2) . The isotropic variant of the TV norm is given by 

T V I (g) = 

N−1 ∑ 

i =1 

N−1 ∑ 

j=1 

√ 

(g i +1 , j − g i, j ) 2 + (g i, j+1 − g i, j ) 2 (4) 

3 The minimum in (2) cannot be guaranteed to be unique, in which case the so- 

lution will depend on the solver. 
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